Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 501(4): 1023-1028, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29777707

RESUMO

Amyloid-ß precursor protein (APP) correlates with the pathogenesis of certain brain diseases, such as Alzheimer disease (AD). APP is cleaved by several enzymes to produce APP metabolites, including the amyloid beta peptide (Aß), which accumulates in the brain of AD patients. However, the exact functions of APP metabolites remain elusive. In this study, using genome editing technology, we mutated juxta- and intra-membrane domains of murine APP in the mouse neuroblastoma cell line, Neuro2a. We identified several clones that expressed characteristic patterns of APP metabolites. Mutations in juxta- (deletion 673A), and intra-membrane (deletion 705-6LM) domains of APP, decreased overall levels of APP metabolites or decreased the level of α-secretase-cleaved carboxy-terminal fragment (αCTF), respectively. APP is known to influence neuronal differentiation; therefore, we used theses clones to dissect the function of APP metabolites during neuronal differentiation. One clone (CA), which expressed reduced levels of both FL-APP and αCTF, showed increased expression of the neuronal marker, ß3-tubulin, and enhanced retinoic acid (RA)-induced neurite outgrowth. In contrast, a clone that expressed FL-APP, but was devoid of αCTF (CE), showed comparable expression of ß3-tubulin and neurite outgrowth compared with normal Neuro2a cells. These data indicate that FL-APP is a suppressor of neurite outgrowth. Our data suggest a novel regulatory function of juxta- and intra-membrane domains on the metabolism and function of APP.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Edição de Genes , Genoma , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Camundongos , Proteínas Mutantes/metabolismo , Mutação/genética , Neuritos/metabolismo , Tubulina (Proteína)/metabolismo
2.
Influenza Other Respir Viruses ; 18(6): e13338, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38890511

RESUMO

BACKGROUND: This phase 2b/3, randomized, placebo-controlled trial explored the efficacy and evaluated the safety of ensitrelvir. This trial involved individuals with asymptomatic infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and patients with mild symptoms of coronavirus disease 2019 (COVID-19). METHODS: The trial was conducted at 57 medical institutions in Japan, South Korea, and Vietnam (study period: January 6-August 14, 2022). Eligible participants were randomized (1:1:1) to the ensitrelvir 125-mg, ensitrelvir 250-mg, or placebo group, received the allocated intervention orally, and were followed up until Day 28. Participants self-rated the severity of 14 typical COVID-19 symptoms and recorded the data in an electronic diary. RESULTS: In total, 572 participants (194, 189, and 189 in the ensitrelvir 125-mg, ensitrelvir 250-mg, and placebo groups, respectively) were included in the intention-to-treat population. Ensitrelvir 125-mg group observed a 77% reduction in the risk of developing any of the 14 COVID-19 symptoms or fever and a 29% reduction in the risk of worsening of such symptoms or fever versus placebo (statistically nonsignificant). The viral RNA, viral titer, and time to infectious viral clearance observed a statistically significant decrease versus placebo. Most treatment-related adverse events (TEAEs) were mild to moderate in severity, and the most common TEAE observed across groups was a decrease in high-density lipoprotein. CONCLUSIONS: Our exploratory results suggest a potential reduction in the risk of development or worsening of COVID-19 symptoms with ensitrelvir. Ensitrelvir showed antiviral efficacy and was well tolerated. TRIAL REGISTRATION: Japan Registry of Clinical Trials identifier: jRCT2031210350.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , SARS-CoV-2/efeitos dos fármacos , COVID-19/virologia , Antivirais/uso terapêutico , Antivirais/efeitos adversos , Resultado do Tratamento , Infecções Assintomáticas , Vietnã , Japão , Idoso , República da Coreia , Adulto Jovem , Indazóis , Triazinas , Triazóis
3.
iScience ; 25(3): 103869, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35243232

RESUMO

Endosomal anomalies because of vesicular traffic impairment have been indicated as an early pathology of Alzheimer'| disease (AD). However, the mechanisms and therapeutic targets remain unclear. We previously reported that ßCTF, one of the pathogenic metabolites of APP, interacts with TMEM30A. TMEM30A constitutes a lipid flippase with P4-ATPase and regulates vesicular trafficking through the asymmetric distribution of phospholipids. Therefore, the alteration of lipid flippase activity in AD pathology has got attention. Herein, we showed that the interaction between ßCTF and TMEM30A suppresses the physiological formation and activity of lipid flippase in AD model cells, A7, and AppNL-G-F/NL-G-F model mice. Furthermore, the T-RAP peptide derived from the ßCTF binding site of TMEM30A improved endosomal anomalies, which could be a result of the restored lipid flippase activity. Our results provide insights into the mechanisms of vesicular traffic impairment and suggest a therapeutic target for AD.

4.
PLoS One ; 13(8): e0200988, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30086173

RESUMO

Although the aggregation of amyloid-ß peptide (Aß) clearly plays a central role in the pathogenesis of Alzheimer's disease (AD), endosomal traffic dysfunction is considered to precede Aß aggregation and trigger AD pathogenesis. A body of evidence suggests that the ß-carboxyl-terminal fragment (ßCTF) of amyloid-ß precursor protein (APP), which is the direct precursor of Aß, accumulates in endosomes and causes vesicular traffic impairment. However, the mechanism underlying this impairment remains unclear. Here we identified TMEM30A as a candidate partner for ßCTF. TMEM30A is a subcomponent of lipid flippase that translocates phospholipids from the outer to the inner leaflet of the lipid bilayer. TMEM30A physically interacts with ßCTF in endosomes and may impair vesicular traffic, leading to abnormally enlarged endosomes. APP traffic is also concomitantly impaired, resulting in the accumulation of APP-CTFs, including ßCTF. In addition, we found that expressed BACE1 accumulated in enlarged endosomes and increased Aß production. Our data suggested that TMEM30A is involved in ßCTF-dependent endosome abnormalities that are related to Aß overproduction.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Endossomos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/metabolismo , Células COS , Chlorocebus aethiops , Endossomos/patologia , Humanos , Proteínas de Membrana/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA