Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Macromol Rapid Commun ; 43(6): e2100764, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35086162

RESUMO

Dye-sensitized solar cell (DSSC) is a promising alternative to the commercially available amorphous silicon-based solar cell because of several advantageous properties. A DSSC with a fast ion conducting solid polymer electrolyte is required for the arid atmosphere of Gulf countries. In this work, a new matrix, poly(ethylene oxide)-tetramethyl succinonitrile blend to synthesize a blend-LiI-I2 solid polymer electrolyte for the DSSC application has been proposed. The tetramethyl succinonitrile is a member of plastic crystal with a solid-solid phase transition temperature (Tpc ) of ≈71 °C and melting temperature (Tm ) of ≈170.5 °C. Its molar fraction, 0.1-0.15 is sufficient enough for synthesizing a polymer electrolyte with electrical conductivity of >10-4 S cm-1 at room temperature. This electrolyte shows Vogel-Tamman-Fulcher type behavior with a low value (≈0.083 eV) of pseudo-activation energy for easy ion transport. The results of Fourier-transform infrared spectroscopy, X-ray diffractometry, and differential scanning calorimetry studies reveal the plasticizing effect of tetramethyl succinonitrile to form an amorphous phase. This electrolyte results in a ≈661% gain in short-circuit current density and thereby a ≈552% gain in the cell efficiency (≈3.5%) with respect to the DSSC prepared with the tetramethyl succinonitrile-free electrolyte.


Assuntos
Polietilenoglicóis , Polímeros , Eletrólitos/química , Óxido de Etileno , Nitrilas , Plastificantes , Polietilenoglicóis/química , Polímeros/química
2.
Bioorg Med Chem Lett ; 30(11): 127138, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32247734

RESUMO

A series of amide derivatives of stilbene was synthesized and investigated for osteogenic activity. Out of sixteen, seven compounds viz19c, 19g, 19i, 24b, 25a, 25c and 26a showed significant osteoblast differentiation within 1 pM-1 µM concentrations. Amongst all, 26a was identified as most active molecule which presented effective mineralization of osteoblasts and expression of mRNA of osteogenic marker gene such as BMP-2, ALP, and Runx-2 at 1 pM. In estrogen-deficient balb/c mice, 26a showed significant osteogenic activity at 5 mg-kg-1 body weight dose. The protein expression study for estrogen receptors α and ß (ER-α & ER-ß) using mouse calvarial osteoblasts (MCOs) and molecular docking analyses showed preferential expression of ER-ß by 26a indicating the possibility of ER-ß mediated osteogenic activity of 26a.


Assuntos
Amidas/química , Estilbenos/química , Animais , Sítios de Ligação , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/química , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , RNA Mensageiro/metabolismo , Cloridrato de Raloxifeno/química , Cloridrato de Raloxifeno/metabolismo , Cloridrato de Raloxifeno/farmacologia , Estilbenos/metabolismo , Estilbenos/farmacologia
3.
Crit Rev Clin Lab Sci ; 56(1): 1-17, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30373492

RESUMO

Hosts and microbes have co-evolved over millions of years. Inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative colitis (UC), are chronic immune-mediated diseases. Although the etiology of IBD remains an enigma, various studies have proposed the involvement of mucosa-associated Escherichia coli (E. coli) strains in the pathogenesis of IBD. E. coli, a usual inhabitant of the intestine, causes disease after acquiring virulence factors; however, the mechanisms underlying this phenomenon are not well understood. In the present review, we will discuss recent findings on how gut E. coli regulates and controls gut homeostasis and the pathogenesis of IBD. We will also summarize current knowledge regarding the cause, mechanism, genetics, and environmental factors involved in the regulation of IBD. Furthermore, we will discuss the possibility of alterations in innate and acquired immunity during the course of disease as well as possible treatment.


Assuntos
Escherichia coli/fisiologia , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/patologia , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia
4.
Saudi Pharm J ; 25(8): 1151-1157, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30166903

RESUMO

Collecting evidence suggests that the intercellular infection of Chlamydia pneumoniae in lungs contributes to the etiology of lung cancer. Many proteins of Chlamydia pneumoniae outmanoeuvre the various system of the host. The infection may regulate various factors, which can influence the growth of lung cancer in affected persons. In this in-silico study, we predict potential targeting of Chlamydia pneumoniae proteins in mitochondrial and cytoplasmic comportments of host cell and their possible involvement in growth and development of lung cancer. Various cellular activities are controlled in mitochondria and cytoplasm, where the localization of Chlamydia pneumoniae proteins may alter the normal functioning of host cells. The rationale of this study is to find out and explain the connection between Chlamydia pneumoniae infection and lung cancer. A sum of 183 and 513 proteins were predicted to target in mitochondria and cytoplasm of host cell out of total 1112 proteins of Chlamydia pneumoniae. In particular, many targeted proteins may interfere with normal growth behaviour of host cells, thereby altering the decision of program cell death. Present article provides a potential connection of Chlamydia pneumoniae protein targeting and proposed that various targeted proteins may play crucial role in lung cancer etiology through diverse mechanisms.

5.
Saudi Pharm J ; 23(1): 85-94, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25685047

RESUMO

Quantitative determination of gatifloxacin in tablets, solid lipid nanoparticles (SLNs) and eye-drops using a very simple and rapid chromatographic technique was validated and developed. Formulations were analyzed using a reverse phase SUPELCO® 516 C-18-DB, 50306-U, HPLC column (250 mm × 4.6 mm, 5 µm) and a mobile phase consisting of disodium hydrogen phosphate buffer:acetonitrile (75:25, v/v) and with orthophosphoric acid pH was adjusted to 3.3 The flow rate was 1.0 mL/min and analyte concentrations were measured using a UV-detector at 293 nm. The analyses were performed at room temperature (25 ± 2 °C). Gatifloxacin was separated in all the formulations within 2.767 min. There were linear calibration curves over a concentration range of 4.0-40 µg.mL(-1) and correlation coefficients of 0.9998 with an average recovery above 99.91%. Detection of analyte from different dosage forms at the same Rt indicates the specificity and stability of the developed method.

6.
Polymers (Basel) ; 16(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38794629

RESUMO

In a solid-state dye-sensitized solar cell, a fast-ion conducting (σ25°C > 10-4 S cm-1) solid redox mediator (SRM; electrolyte) helps in fast dye regeneration and back-electron transfer inhibition. In this work, we synthesized solid Co2+/3+ redox mediators using a [(1 - x)succinonitrile: x poly(ethylene oxide)] matrix, LiX, Co(tris-2,2'-bipyridine)3(bis(trifluoromethyl) sulfonylimide)2, and Co(tris-2,2'-bipyridine)3(bis(trifluoromethyl) sulfonylimide)3 via the solution-cast method, and the results were compared with those of their acetonitrile-based liquid counterparts. The notation x is a weight fraction (=0, 0.5, and 1), and X represents an anion. The anion was either bis(trifluoromethyl) sulfonylimide [TFSI-; ionic size, 0.79 nm] or trifluoromethanesulfonate [Triflate-; ionic size, 0.44 nm]. The delocalized electrons and a low value of lattice energy for the anions made the lithium salts highly dissociable in the matrix. The electrolytes exhibited σ25°C ≈ 2.1 × 10-3 (1.5 × 10-3), 7.2 × 10-4 (3.1 × 10-4), and 9.7 × 10-7 (6.3 × 10-7) S cm-1 for x = 0, 0.5, and 1, respectively, with X = TFSI- (Triflate-) ions. The log σ-T-1 plot portrayed a linear curve for x = 0 and 1, and a downward curve for x = 0.5. The electrical transport study showed σ(TFSI-) > σ(Triflate-), with lower activation energy for TFSI- ions. The anionic effect increased from x = 0 to 1. This effect was explained using conventional techniques, such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), UV-visible spectroscopy (UV-vis), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA).

7.
Chemosphere ; 346: 140410, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898467

RESUMO

Enhancing the solar-physical conversion efficacy ability of the nanomaterials is an essential for real-time implementation. We report the enhanced solar-physical efficiency of the BiFeO3 nanospheres via Gd3+ doping and Au nanoparticles decoration. Initially, we have obtained the Bi1-xGdxFeO3 nanospheres were attained via a simple solvothermal technique and then citrate reduction of Au was conducted. Obtained perovskite BiFeO systems were studied for the Gd3+ doping, crystalline phase and elemental purity using the XRD and XPS techniques. Transmission electron microscope had revealed the ∼400 nm sized BiFeO3 nanospheres. Optical absorption spectrum revealed the enhanced visible photon absorption occurring in BiFeO3 for both Gd3+ doping and Au decoration. The bandgap values of pristine, 1%, 3% and 5% Gd3+ doped in BiFeO3 are 2.2 eV, 2.19 eV, 2.17 eV and 2.12 eV, respectively. Conducted photoluminescence revealed the dual electron trapping occurring in BiFeO3 via Gd3+ ions and Au nanoparticles. LED light assisted 72% of piezo-photocatalytic degradation efficiency of Tetracycline is achieved with Bi0 95Fe0 05O3/Au, whereas the photo catalytic is only 65% and piezo catalytic efficiency is 58%. In recyclable studies the Bi0.95Gd0.05FeO3/Au had shown the consistent piezo-photocatalytic efficiency for 3 reaction cycles. Further, fabricated DSSC studies revealed that near 30 % enhanced solar photovoltaic efficiency for Bi0 95Fe0 05O3/Au (η = 6.5%) solar cells on par to the pristine BiFeO3 (η = 5.02%).


Assuntos
Nanopartículas Metálicas , Nanosferas , Ouro , Compostos de Cálcio
8.
RSC Adv ; 14(1): 539-547, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38173611

RESUMO

A solid redox mediator (solid electrolyte) with an electrical conductivity (σ25°C) greater than 10-4 S cm-1 is an essential requirement for a dye-sensitized solar cell in the harsh weather of Gulf countries. This paper reports the electrical properties of solid redox mediators prepared using highly dissociable ionic salts: Co[tris-(2,2'-bipyridine)]3(TFSI)2, Co[tris-(2,2'-bipyridine)]3(TFSI)3, and LiCF3SO3 as a source of Co2+, Co3+, and Li+ ions, respectively, in a solid matrix: [(1 - x)succinonitrile:xpoly(ethylene oxide)], where x = 0, 0.5, and 1 in weight fraction. In the presence of large size of cations (Co2+ and Co3+) and large-sized and weakly-coordinated anions (TFSI- and CF3SO3-), only the succinonitrile-poly(ethylene oxide) blend (x = 0.5) resulted in highly conductive amorphous regions with σ25°C of 4.7 × 10-4 S cm-1 for EO/Li+ = 108.4 and 3.1 × 10-4 S cm-1 for EO/Li+ = 216.8. These values are slightly lower than 1.5 × 10-3 S cm-1 for x = 0 and higher than 6.3 × 10-7 S cm-1 for x = 1. Only blend-based electrolytes exhibited a downward curve in the log σ-T-1 plot, a low value of pseudo-activation energy (0.06 eV), a high degree of transparency, and high thermal stability, making it useful for device applications.

9.
Micromachines (Basel) ; 14(7)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37512772

RESUMO

We report Na-Alginate-based hydrogels with high ionic conductivity and water content fabrication using poly (3,4-ethylene dioxythiophene) (PEDOT): poly (4-styrene sulfonic acid) (PSS) and a hydrogel matrix based on dimethyl sulfoxide (DMSO). DMSO was incorporated within the PEDOT:PSS hydrogel. A hydrogel with higher conductivity was created through the in-situ synthesis of intra-Na-Alginate, which was then improved upon by H2SO4 treatment. Field emission scanning electron microscopy (FESEM) was used to examine the surface morphology of the pure and synthetic hydrogel. Structural analysis was performed using Fourier-transform infrared spectroscopy (FTIR). Thermogravimetric analysis (TGA), which examines thermal properties, was also used. A specific capacitance of 312 F/g at 80 mV/s (energy density of 40.58 W/kg at a power density of 402.20 W/kg) at 100 DC mA/g was achieved by the symmetric Na-Alginate/PEDOT:PSS based flexible supercapacitor. The electrolyte achieved a higher ionic conductivity of 9.82 × 10-2 and 7.6 × 10-2 Scm-1 of Na-Alginate and a composite of Na-Alginate/PEDOT:PSS at 25 °C. Furthermore, the supercapacitor Na-Alginate/PEDOT:PSS//AC had excellent electrochemical stability by showing a capacity retention of 92.5% after 3000 continuous charge-discharge cycles at 10 mA current density. The Na- Alginate/PEDOT:PSS hydrogel displayed excellent flexibility and self-healing after re-contacting the two cut hydrogel samples of electrolyte for 90 min because of the dynamic cross-linking network efficiently dissipated energy. The illumination of a light-emitting diode (LED) verified the hydrogel's capacity for self-healing.

10.
Micromachines (Basel) ; 14(7)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37512690

RESUMO

A conductive cotton hydrogel with graphene and ions can come into contact with electrodes in solid electrolytes at the molecular level, leading to a more efficient electrochemical process in supercapacitors. The inherently soft nature of cotton mixed with hydrogel provides superior flexibility of the electrolyte, which benefits the devices in gaining high flexibility. Herein, we report on the current progress in solid-state hydrogel electrolytes based on 3D pure cotton/graphene and present an overview of the future direction of research. The ionic conductivity of a complex hydrogel significantly increased by up to 13.9 × 10-3 S/cm at 25 °C, due to the presence of graphene, which increases ionic conductivity by providing a smooth pathway for the transport of charge carriers and the polymer. Furthermore, the highest specific capacitance of 327 F/g at 3 mV/s was achieved with cyclic voltammetry measurement and a galvanostatic charge-discharge measurement showed a peak value of 385.4 F/g at 100 mA/g current density. Furthermore, an electrochemical analysis demonstrated that a composite cotton/graphene-based hydrogel electrolyte is electrically stable and could be used for the design of next-generation supercapacitors.

11.
Polymers (Basel) ; 14(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35567039

RESUMO

The solar cell has been considered one of the safest modes for electricity generation. In a dye-sensitized solar cell, a commonly used iodide/triiodide redox mediator inhibits back-electron transfer reactions, regenerates dyes, and reduces triiodide into iodide. The use of iodide/triiodide redox, however, imposes several problems and hence needs to be replaced by alternative redox. This paper reports the first Co2+/Co3+ solid redox mediators, prepared using [(1−x)succinonitrile: xPEO] as a matrix and LiTFSI, Co(bpy)3(TFSI)2, and Co(bpy)3(TFSI)3 as sources of ions. The electrolytes are referred to as SN_E (x = 0), Blend 1_E (x = 0.5 with the ethereal oxygen of the PEO-to-lithium ion molar ratio (EO/Li+) of 113), Blend 2_E (x = 0.5; EO/Li+ = 226), and PEO_E (x = 1; EO/Li+ = 226), which achieved electrical conductivity of 2.1 × 10−3, 4.3 × 10−4, 7.2 × 10−4, and 9.7 × 10−7 S cm−1, respectively at 25 °C. Only the blend-based polymer electrolytes exhibited the Vogel-Tamman-Fulcher-type behavior (vitreous nature) with a required low pseudo-activation energy (0.05 eV), thermal stability up to 125 °C, and transparency in UV-A, visible, and near-infrared regions. FT-IR spectroscopy demonstrated the interaction between salt and matrix in the following order: SN_E < Blend 2_E < Blend 1_E << PEO_E. The results were compared with those of acetonitrile-based liquid electrolyte, ACN_E.

12.
Polymers (Basel) ; 14(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36145873

RESUMO

An all-solid−state dye-sensitized solar cell is one of the non-fossil fuel-based electrochemical devices for electricity generation in a high-temperature region. This device utilizes a redox mediator, which is a fast ion-conducting solid polymer electrolyte (SPE). The SPE makes the device economical, thinner, and safer in high-temperature regions. The SPE generally has a form of matrix−plasticizer−redox salts. Succinonitrile (SN) is generally employed as a plasticizer for reducing the crystallinity of poly(ethylene oxide), abbreviated as PEO, a common polymeric matrix. In the present paper, the structural and thermal properties of tetramethyl succinonitrile (TMSN) were compared with SN for its application as a solid plasticizer. TMSN and SN both are plastic crystals. TMSN has four methyl groups by replacing the hydrogen of the SN, resulting in higher molecular weight, solid−solid phase transition temperature, and melting temperature. We thoroughly studied the structural, thermal, and electrical properties of the [(1−x)PEO: xTMSN] blend for utilizing it as a matrix, where x = 0−0.25 in mole fraction. The FT-IR spectra and XRD patterns of the blends exhibited PEO-alike up to x = 0.15 mole and TMSN-alike for x > 0.15 mole. Differential scanning calorimetry revealed formation of a eutectic phase from x = 0.1 mole and phase separation from x = 0.15 mole. The blends with x = 0.1−0.15 mole had a low value of PEO crystallinity. Thermogravimetric analysis showed thermal stability of the blends up to 75 °C. The blends exhibited electrical conductivity, σ25°C more than 10−9 S cm−1, and Arrhenius behavior (activation energy, ~0.8 eV) in a temperature region, 25−50 °C.

13.
J Cancer ; 12(23): 7214-7222, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34729122

RESUMO

Gallbladder cancer (GBC) is one of the leading causes of cancer-related mortality worldwide. Researchers have investigated that specific strains of bacteria are connected with growth of different types of cancers in human. Some reports show possible implication of Helicobacter pylori (H. pylori) in the etiology of gallbladder cancer (GBC). Their enigmatic mechanisms, nevertheless, are not still well clear. We sought to predict whether various proteins of H. pylori targeted to nucleus of host cells and their implication in growth of gallbladder cancer. GBC is one of the leading causes of cancer mortality worldwide. We applied bioinformatics approach to analyze the H. pylori proteins targeting into the nucleus of host cells using different bioinformatics predictors including nuclear localization signal (NLS) mapper Balanced Subcellular Localization (BaCelLo) and Hum-mPLoc 2.0. Various nuclear targeting proteins may have a potential role in GBC etiology during intracellular infection. We identified 46 H. pylori proteins targeted into nucleus of host cell through bioinformatics tools. These H. pylori nucleus-targeting proteins might alter the normal function of host cells by disturbing the different pathways including replication, transcription, translation etc. Various nucleus-targeted proteins can affect the normal growth and development of infected cells. We propose that H. pylori proteins targeting into the nucleus of host cells regulate GBC growth using different strategies. These integrative bioinformatics research demonstrated several H. pylori proteins that may serve as possible targets or biomarkers for early cure and treatment or diagnosis GBC.

14.
Sci Rep ; 10(1): 7881, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398650

RESUMO

A facile green route has been employed for the synthesis of ZnO and Ag-doped ZnO using Cannabis sativa as a reducing and stabilizing agent. The as-synthesized nanoparticles were characterized and tested for photocatalytic dye degradation and antimicrobial activity. The results suggested that nanoparticles have shown antimicrobial activity against different human pathogenic bacteria (Escherichia coli, Klebsiella pneumonia, MRSA, Pseudomonas aeruginosa, Salmonella typhi, Staphylococcus aureus) and fungal strains (Fusarium spp. and Rosellinia necatrix). Ag-doped nanoparticles comparatively have shown better removal Congo red and methyl orange under visible light. Therefore, green synthesized nanoparticles could have beneficial applications in environmental science and biological field.


Assuntos
Antibacterianos/toxicidade , Compostos Azo/metabolismo , Nanopartículas Metálicas/toxicidade , Extratos Vegetais/química , Óxido de Zinco/química , Antibacterianos/química , Compostos Azo/química , Cannabis/química , Catálise/efeitos da radiação , Escherichia coli/efeitos dos fármacos , Fusarium/efeitos dos fármacos , Química Verde/métodos , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana/métodos , Microscopia Eletrônica , Estrutura Molecular , Oxirredução , Folhas de Planta/química , Pseudomonas aeruginosa/efeitos dos fármacos , Espectrometria por Raios X , Staphylococcus aureus/efeitos dos fármacos , Difração de Raios X
15.
PLoS One ; 11(2): e0148530, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26871581

RESUMO

Accumulating evidence has recently supported the association of bacterial infection with the growth and development of cancers, particularly in organs that are constantly exposed to bacteria such as the lungs, colon, cervical cancer etc. Our in silico study on the proteome of Chlamydia pneumoniae suggests an unprecedented idea of the etiology of lung cancer and have revealed that the infection of C. pneumoniae is associated with lung cancer development and growth. It is reasonable to assume that C. pneumoniae transports its proteins within host-intracellular organelles during infection, where they may work with host-cell proteome. The current study was performed for the prediction of nuclear targeting protein of C. pneumoniae in the host cell using bioinformatics predictors including ExPASy pI/Mw tool, nuclear localization signal (NLS) mapper, balanced sub cellular localization predictor (BaCeILo), and Hum-mPLoc 2.0. We predicted 47/1112 nuclear-targeting proteins of C. pneumoniae connected with several possible alterations in host replication and transcription during intracellular infection. These nuclear-targeting proteins may direct to competitive interactions of host and C. pneumoniae proteins with the availability of same substrate and may be involved as etiological agents in the growth and development of lung cancer. These novel findings are expected to access in better understanding of lung cancer etiology and identifying molecular targets for therapy.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Chlamydophila/complicações , Chlamydophila pneumoniae/fisiologia , Neoplasias Pulmonares/microbiologia , Pulmão/microbiologia , Biologia de Sistemas/métodos , Proteínas de Bactérias/análise , Infecções por Chlamydophila/metabolismo , Infecções por Chlamydophila/microbiologia , Chlamydophila pneumoniae/química , Simulação por Computador , Interações Hospedeiro-Patógeno , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Modelos Biológicos , Sinais de Localização Nuclear
16.
Food Chem Toxicol ; 48(12): 3432-5, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20868721

RESUMO

Micronuclei frequency is a sensitive biomarker used to evaluate the genotoxicity induced by xenobiotics. Pioglitazone and glimepiride were associated with genotoxicity in experimental studies conducted in rats. Considering the lack of published reports on genotoxicity in T2DM patients using pioglitazone and glimepiride drugs in combination, current study aimed to assess whether the case and control groups significantly differ from each other in the frequency of micronuclei. Subjects comprise 127 T2DM patients (35-65 years old) under pioglitazone and glimepiride treatment for >5 years and control group of 140 age matched healthy controls (38-69 years old). Exfoliated oral mucosa cells were collected from buccal mucosa of all subjects and Feulgen/Fast-Green method was followed to screen for micronuclei. Factors such as gender, food habits, living areas and occupation have not shown significant association with the variation in micronuclei frequency among the studied subjects. However, T2DM patients under long term treatment of pioglitazone and glimepiride in combination, showed increased frequency of micronuclei as compared to controls (p<0.001). Current study suggests that the micronuclei assay can be used as a constituent among the panel of biomarkers to assess genotoxicity in T2DM patients under long term antihyperglycemic drug therapy.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Hipoglicemiantes/efeitos adversos , Testes para Micronúcleos , Compostos de Sulfonilureia/efeitos adversos , Tiazolidinedionas/efeitos adversos , Adulto , Idoso , Dano ao DNA , Diabetes Mellitus Tipo 2/tratamento farmacológico , Quimioterapia Combinada , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/ultraestrutura , Feminino , Marcadores Genéticos , Humanos , Hipoglicemiantes/uso terapêutico , Masculino , Pessoa de Meia-Idade , Pioglitazona , Compostos de Sulfonilureia/uso terapêutico , Tiazolidinedionas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA