RESUMO
Long-distance transportation from a radiation facility to a target site potentially affects the quantity and quality of sterile male mosquitoes. This study tested the effects of multi-hour land transportation on the survival, longevity, and mating performance of gamma-rays sterilized adult and pupal male mosquitoes at different densities in non-chilled condition. The results demonstrated that mortality rate, longevity, induced sterility (IS) level, and mating competitiveness (C index) were significantly affected by life stage, transportation treatment, and density. Transportation was detrimental to the survival and longevity of the adults, and transporting pupae was restricted by the overcrowding effect; particularly, those packing density of 200 pupae. The longevity of transported mosquitoes were 1-5 days shorter than that of non-transported mosquitoes regardless of packing density. The irradiated transported adult males exhibited an equal IS and C index to their non-transported counterparts. Although there was no evidence suggested an association between low mating competitiveness and packing density in the transported adults, the mating competitiveness of adult mosquitoes decreased with increased packing density. Additionally, the effects of transportation and packing density on the mating ability of transported pupal males were also notable. The results indicate the factors of packing density and life stages in transporting sterile males under non-chilled conditions should be taken into account in formulating the procedure in SIT operation.
Assuntos
Aedes , Infertilidade , Animais , Longevidade , Masculino , Pupa , Reprodução , Comportamento Sexual AnimalRESUMO
The cocoa mealybug, Exallomochlus hispidus Morrison (Hemiptera: Pseudococcidae) is known to attack mangosteen, an important fruit export commodity for Indonesia. The mealybug is polyphagous, so alternative host plants can serve as a source of nourishment. This study aimed to record the bionomics of E. hispidus on mangosteen (Garcinia mangostana L.) and three alternative hosts, kabocha squash (Cucurbita maxima L.), soursop (Annona muricata, L.), and guava (Psidium guajava L.). First-instar nymphs of the E. hispidus were reared at room temperature on mangosteen, kabocha, soursop, and guava fruits until they developed into adults and produced nymphs. Female E. hispidus go through three instar stages before adulthood. The species reproduces by deuterotokous parthenogenesis. Exallomochlus hispidus successfully developed and reproduced on all four hosts. The shortest life cycle of the mealybug occurred on kabocha (about 32.4 days) and the longest was on guava (about 38.3 days). The highest fecundity was found on kabocha (about 100 nymphs/female) and the lowest on mangosteen (about 46 nymphs/female). The shortest oviposition period was 10 days on mangosteen and the longest, 10 days, on guava. These findings could be helpful in controlling E. hispidus populations in orchards.