Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Acc Chem Res ; 56(13): 1815-1825, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37347953

RESUMO

ConspectusThe surface chemistry of lead halide perovskite nanocrystals (NCs) plays a major role in dictating their colloidal and structural stability as well as governing their optical properties. A deep understanding of the nature of the ligand shell, ligand-NC, and ligand-solvent interactions is therefore of utmost importance. Our recent studies have revealed that such knowledge can be harnessed following a multidisciplinary approach comprising chemical, structural, and spectroscopic analyses coupled with atomistic modeling. We show that specific surface terminations can be produced only by employing flexible and versatile syntheses that enable to work under desired conditions. In this Account, we first describe our studies aimed at synthesizing CsPbBr3 NCs with various surface terminations. These include CsPbBr3 NCs prepared under Br- and oleylamine-rich conditions, which feature a ligand shell composed of alkylammonium-Br species and a photoluminescence quantum yield (PLQY) of ∼90%. On the other hand, taking advantage of the inability of secondary amines to bind to the perovskite NCs surface, we could prepare cuboidal CsPbBr3 NCs bearing a Cs-oleate surface termination and a PLQY of 70% by employing oleic acid and secondary alkylamines. In the quest to identify ligands that can bind more strongly than oleates or primary alkylammonium ions to the surface of NCs already in the synthesis step, we used phosphonic acids as the sole ligands in the CsPbBr3 NCs synthesis, which yielded NCs with a truncated octahedron shape, high PLQY (∼100%), and a PbBr2-terminated surface passivated by hydrogen phosphonates and phosphonic acid anhydride. The surface chemistry and the stability of perovskite NCs were investigated via ad-hoc postsynthesis treatments. We found, for example, that reacting oleylammonium-Br-terminated NCs with stoichiometric amounts of neutral primary alkylamines (or their conjugated acids) led to a partial replacement of oleylammonium ions with new alkylammonium ions (following a deprotonation/protonation mechanism), which resulted in a boost of the PLQY (up to 100%) and of the NCs' colloidal stability. Similar results in terms of optical properties were achieved by treating Cs-oleate-terminated NCs with alkylammonium-carboxylate or quaternary ammonium-Br (namely, didodecyldimethylammonium-Br, DDA-Br) couples. Interestingly, when the native NCs are ligand exchanged with DDA-Br, the ligand shell is then composed of species not bearing any proton. This, in turn, enabled us to study the interaction of such NCs with a variety of ligands under completely aprotic conditions wherein these DDA-Br-capped NCs were basically inert. The only exceptions were carboxylic, phosphonic, and sulfonic acids that were capable of stripping surface DDA-Br couples. As a note, most studies on CsPbBr3 NCs to date have focused primarily on choosing ligands with specific anchoring groups rather than on tuning the length and type of alkyl chains, as this is time-consuming and requires a large number of syntheses. Our recent developments in the computational chemistry of colloidal NCs are expected to provide a pivotal role in this direction since they can be integrated with machine learning models to investigate with greater details the ligand-NC, ligand-ligand, and ligand-solvent interactions and ultimately find optimal candidates through the prediction of surfactant properties using high-throughput data sets.

2.
J Am Chem Soc ; 145(33): 18329-18339, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37608781

RESUMO

We have approached the synthesis of colloidal InAs nanocrystals (NCs) using amino-As and ligands that are different from the commonly employed oleylamine (OA). We found that carboxylic and phosphonic acids led only to oxides, whereas tri-n-octylphosphine, dioctylamine, or trioctylamine (TOA), when employed as the sole ligands, yielded InAs NCs with irregular sizes and a broad size distribution. Instead, various combinations of TOA and OA delivered InAs NCs with good control over the size distribution, and the TOA:OA volume ratio of 4:1 generated InAs tetrapods with arm length of 5-6 nm. Contrary to tetrapods of II-VI materials, which have a zinc-blende core and wurtzite arms, these NCs are entirely zinc-blende, with arms growing along the ⟨111⟩ directions. They feature a narrow excitonic peak at ∼950 nm in absorption and a weak photoluminescence emission at 1050 nm. Our calculations indicated that the bandgap of the InAs tetrapods is mainly governed by the size of their core and not by their arm lengths when these are longer than ∼3 nm. Nuclear magnetic resonance analyses revealed that InAs tetrapods are mostly passivated by OA with only a minor fraction of TOA. Molecular dynamics simulations showed that OA strongly binds to the (111) facets whereas TOA weakly binds to the edges and corners of the NCs and their combined use (at high TOA:OA volume ratios) promotes growth along the ⟨111⟩ directions, eventually forming tetrapods. Our work highlights the use of mixtures of ligands as a means of improving control over InAs NCs size and size distribution.

3.
J Am Chem Soc ; 145(39): 21419-21431, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37747924

RESUMO

Combining multiple species working in tandem for different hydrogen evolution reaction (HER) steps is an effective strategy to design HER electrocatalysts. Here, we engineered a hierarchical electrode for the HER composed of amorphous-TiO2/Cu nanorods (NRs) decorated with cost-effective Ru-Cu nanoheterostructures (Ru mass loading = 52 µg/cm2). Such an electrode exhibits a stable, over 250 h, low overpotential of 74 mV at -200 mA/cm2 for the HER in 1 M NaOH. The high activity of the electrode is attributed, by structural analysis, operando X-ray absorption spectroscopy, and first-principles simulations, to synergistic functionalities: (1) mechanically robust, vertically aligned Cu NRs with high electrical conductivity and porosity provide fast charge and gas transfer channels; (2) the Ru electronic structure, regulated by the size of Cu clusters at the surface, facilitates the water dissociation (Volmer step); (3) the Cu clusters grown atop Ru exhibit a close-to-zero Gibbs free energy of the hydrogen adsorption, promoting fast Heyrovsky/Tafel steps. An alkaline electrolyzer (AEL) coupling the proposed cathode and a stainless-steel anode can stably operate in both continuous (1 A/cm2 for over 200 h) and intermittent modes (accelerated stress tests). A techno-economic analysis predicts the minimal overall hydrogen production cost of US$2.12/kg in a 1 MW AEL plant of 30 year lifetime based on our AEL single cell, hitting the worldwide targets (US$2-2.5/kgH2).

4.
J Phys Chem A ; 127(15): 3427-3436, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37040362

RESUMO

Classical molecular dynamics (MD) simulations on realistic colloidal quantum dot (QD) systems are often hampered by missing force field (FF) parameters for an accurate description of the QD-ligand interface. However, such calculations are of major interest, specifically for studying the surface chemistry of colloidal nanocrystals. In this work, we have utilized a previously published stochastic optimization algorithm to obtain FF parameters for InP and InAs QDs capped by Cl, amine, carboxylate, and thiolate ligands. Our FF parameters are interfaced with well-established FFs for organic molecules, allowing for the simulation of InP and InAs QDs with a broad range of organic ligands in explicit apolar solvents. The quality of our FF parameters was assessed by comparing properties of the classical MD simulations with ab initio MD simulations and experimental and theoretical values from the literature.

5.
Nano Lett ; 22(21): 8567-8573, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36288498

RESUMO

We show how, in the synthesis of yellow-emissive Bi-doped Cs2Ag1-xNaxInCl6 double perovskite nanocrystals (NCs), preventing the transient formation of Ag0 particles increases the photoluminescence quantum yield (PLQY) of the NCs from ∼30% to ∼60%. Calculations indicate that the presence of even a single Ag0 species on the surface of a NC introduces deep trap states. The PL efficiency of these NCs is further increased to ∼70% by partial replacement of Na+ with K+ ions, up to a 7% K content, due to a lattice expansion that promotes a more favorable ligands packing on the NC surface, hence better surface passivation. A further increase in K+ lowers the PLQY, due to both the activation of nonradiative quenching channels and a lower oscillator strength of the BiCl6→AgCl6 transition (through which PL emission occurs). The work indicates how a deeper understanding of parameters influencing carrier trapping/relaxation can boost the PLQY of double perovskites NCs.

6.
J Am Chem Soc ; 144(23): 10515-10523, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35648676

RESUMO

The most developed approaches for the synthesis of InAs nanocrystals (NCs) rely on pyrophoric, toxic, and not readily available tris-trimethylsilyl (or tris-trimethylgermil) arsine precursors. Less toxic and commercially available chemicals, such as tris(dimethylamino)arsine, have recently emerged as alternative As precursors. Nevertheless, InAs NCs made with such compounds need to be further optimized in terms of size distribution and optical properties in order to meet the standard reached with tris-trimethylsilyl arsine. To this aim, in this work we investigated the role of ZnCl2 used as an additive in the synthesis of InAs NCs with tris(dimethylamino)arsine and alane N,N-dimethylethylamine as the reducing agent. We discovered that ZnCl2 helps not only to improve the size distribution of InAs NCs but also to passivate their surface acting as a Z-type ligand. The presence of ZnCl2 on the surface of the NCs and the excess of Zn precursor used in the synthesis enable the subsequent in situ growth of a ZnSe shell, which is realized by simply adding the Se precursor to the crude reaction mixture. The resulting InAs@ZnSe core@shell NCs exhibit photoluminescence emission at ∼860 nm with a quantum yield as high as 42±4%, which is a record for such heterostructures, given the relatively high mismatch (6%) between InAs and ZnSe. Such bright emission was ascribed to the formation, under our peculiar reaction conditions, of an In-Zn-Se intermediate layer between the core and the shell, as indicated by X-ray photoelectron spectroscopy and elemental analyses, which helps to release the strain between the two materials.

7.
J Am Chem Soc ; 144(25): 11059-11063, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35765828

RESUMO

One of the most promising properties of lead halide perovskite nanocrystals (NCs) is their defect tolerance. It is often argued that, due to the electronic structure of the conduction and valence bands, undercoordinated ions can only form localized levels inside or close to the band edges (i.e., shallow traps). However, multiple studies have shown that dangling bonds on surface Br- can still create deep trap states. Here, we argue that the traditional picture of defect tolerance is incomplete and that deep Br- traps can be explained by considering the local environment of the trap states. Using density functional theory calculations, we show that surface Br- sites experience a destabilizing local electrostatic potential that pushes their dangling orbitals into the bandgap. These deep trap states can be electrostatically passivated through the addition of ions that stabilize the dangling orbitals via ionic interactions without covalently binding to the NC surface. These results shed light on the formation of deep traps in perovskite NCs and provide strategies to remove them from the bandgap.

8.
Acc Chem Res ; 54(7): 1555-1564, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33635646

RESUMO

Next-generation colloidal semiconductor nanocrystals featuring enhanced optoelectronic properties and processability are expected to arise from complete mastering of the nanocrystals' surface characteristics, attained by a rational engineering of the passivating ligands. This aspect is highly challenging, as it underlies a detailed understanding of the critical chemical processes that occur at the nanocrystal-ligand-solvent interface, a task that is prohibitive because of the limited number of nanocrystal syntheses that could be tried in the lab, where only a few dozen of the commercially available starting ligands can actually be explored. However, this challenging goal can be addressed nowadays by combining experiments with atomistic calculations and machine learning algorithms. In the last decades we indeed witnessed major advances in the development and application of computational software dedicated to the solution of the electronic structure problem as well as the expansion of tools to improve the sampling and analysis in classical molecular dynamics simulations. More recently, this progress has also embraced the integration of machine learning in computational chemistry and in the discovery of new drugs. We expect that soon this plethora of computational tools will have a formidable impact also in the field of colloidal semiconductor nanocrystals.In this Account, we present some of the most recent developments in the atomistic description of colloidal nanocrystals. In particular, we show how our group has been developing a set of programs interfaced with available computational chemistry software packages that allow the thermodynamic controlling factors in the nanocrystal surface chemistry to be captured atomistically by including explicit solvent molecules, ligands, and nanocrystal sizes that match the experiments. At the same time, we are also setting up an infrastructure to automate the efficient execution of thousands of calculations that will enable the collection of sufficient data to be processed by machine learning.To fully capture the power of these computational tools in the chemistry of colloidal nanocrystals, we decided to embed the thermodynamics behind the dissolution/precipitation of nanocrystal-ligand complexes in organic solvents and the crucial process of binding/detachment of ligands at the nanocrystal surface into a unique chemical framework. We show that formalizing this mechanism with a computational bird's eye view helps in deducing the critical factors that govern the stabilization of colloidal dispersions of nanocrystals in an organic solvent as well as the definition of those key parameters that need to be calculated to manipulate surface ligands. This approach has the ultimate goal of engineering surface ligands in silico, anticipating and driving the experiments in the lab.

9.
J Chem Inf Model ; 62(22): 5525-5535, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36314636

RESUMO

The continuous improvement of computer architectures allows for the simulation of molecular systems of growing sizes. However, such calculations still require the input of initial structures, which are also becoming increasingly complex. In this work, we present CAT, a Compound Attachment Tool (source code available at https://github.com/nlesc-nano/CAT) and Python package for the automatic construction of composite chemical compounds, which supports the functionalization of organic, inorganic, and hybrid organic-inorganic materials. The CAT workflow consists in defining the anchoring sites on the reference material, usually a large molecular system denoted as a scaffold, and on the molecular species that are attached to it, i.e., the ligands. Usually, ligands are pre-optimized in a conformation biased toward more linear structures to minimize interligand(s) steric interactions, a bias that is important when multiple ligands are attached onto the scaffold. The resulting superstructure(s) are then stored in various formats that can be used afterward in quantum chemical calculations or classical force field-based simulations.


Assuntos
Software , Ligantes , Simulação por Computador , Conformação Molecular , Fluxo de Trabalho
10.
Nano Lett ; 21(20): 8619-8626, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34643400

RESUMO

Cs4PbBr6 (0D) nanocrystals at room temperature have both been reported as nonemissive and green-emissive systems in conflicting reports, with no consensus regarding both the origin of the green emission and the emission quenching mechanism. Here, via ab initio molecular dynamics (AIMD) simulations and temperature-dependent photoluminescence (PL) spectroscopy, we show that the PL in these 0D metal halides is thermally quenched well below 300 K via strong electron-phonon coupling. To unravel the source of green emission reported for bulk 0D systems, we further study two previously suggested candidate green emitters: (i) a Br vacancy, which we demonstrate to present a strong thermal emission quenching at room temperature; (ii) an impurity, based on octahedral connectivity, that succeeds in suppressing nonradiative quenching via a reduced electron-phonon coupling in the corner-shared lead bromide octahedral network. These findings contribute to unveiling the mechanism behind the temperature-dependent PL in lead halide materials of different dimensionality.


Assuntos
Nanopartículas
11.
Angew Chem Int Ed Engl ; 61(22): e202201747, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35226780

RESUMO

Here we present a colloidal approach to synthesize bismuth chalcohalide nanocrystals (BiEX NCs, in which E=S, Se and X=Cl, Br, I). Our method yields orthorhombic elongated BiEX NCs, with BiSCl crystallizing in a previously unknown polymorph. The BiEX NCs display a composition-dependent band gap spanning the visible spectral range and absorption coefficients exceeding 105  cm-1 . The BiEX NCs show chemical stability at standard laboratory conditions and form colloidal inks in different solvents. These features enable the solution processing of the NCs into robust solid films yielding stable photoelectrochemical current densities under solar-simulated irradiation. Overall, our versatile synthetic protocol may prove valuable in accessing colloidal metal chalcohalide nanomaterials at large and contributes to establish metal chalcohalides as a promising complement to metal chalcogenides and halides for applied nanotechnology.

12.
J Am Chem Soc ; 143(11): 4290-4301, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33710882

RESUMO

Colloidal quantum dots (QDs) made from In-based III-V semiconductors are emerging as a printable infrared material. However, the formulation of infrared inks and the formation of electrically conductive QD coatings is hampered by a limited understanding of the surface chemistry of In-based QDs. In this work, we present a case study on the surface termination of IR active III-V QDs absorbing at 1220 nm that were synthesized by reducing a mixture of indium halides and an aminoarsine by an aminophosphine in oleylamine. We find that this recently established synthesis method yields In(As,P) QDs with minor phosphorus admixing and a surface terminated by a mixture of oleylamine and chloride. Exposing these QDs to protic surface-active compounds RXH, such as fatty acids or alkanethiols, initiates a ligand exchange reaction involving the binding of the conjugate base RX- and the desorption of 1 equiv of alkylammonium chloride. Using density functional theory simulations, we confirm that the formation of the alkylammonium chloride salt can provide the energy needed to drive such acid/base mediated ligand exchange reactions, even for weak organic acids such as alkanethiols. We conclude that the unique surface termination of In(As,P) QDs, consisting of a mixture of L-type and X-type ligands and acid/base mediated ligand exchange, can form a general model for In-based III-V QDs synthesized using indium halides and aminopnictogens.

13.
J Am Chem Soc ; 143(3): 1435-1446, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33440926

RESUMO

We report the synthesis of colloidal CsPbX3-Pb4S3Br2 (X = Cl, Br, I) nanocrystal heterostructures, providing an example of a sharp and atomically resolved epitaxial interface between a metal halide perovskite and a non-perovskite lattice. The CsPbBr3-Pb4S3Br2 nanocrystals are prepared by a two-step direct synthesis using preformed subnanometer CsPbBr3 clusters. Density functional theory calculations indicate the creation of a quasi-type II alignment at the heterointerface as well as the formation of localized trap states, promoting ultrafast separation of photogenerated excitons and carrier trapping, as confirmed by spectroscopic experiments. Postsynthesis reaction with either Cl- or I- ions delivers the corresponding CsPbCl3-Pb4S3Br2 and CsPbI3-Pb4S3Br2 heterostructures, thus enabling anion exchange only in the perovskite domain. An increased structural rigidity is conferred to the perovskite lattice when it is interfaced with the chalcohalide lattice. This is attested by the improved stability of the metastable γ phase (or "black" phase) of CsPbI3 in the CsPbI3-Pb4S3Br2 heterostructure.

14.
Nano Lett ; 20(3): 1819-1829, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32049539

RESUMO

We combine state-of-the-art ultrafast photoluminescence and absorption spectroscopy and nonadiabatic molecular dynamics simulations to investigate charge-carrier cooling in CsPbBr3 nanocrystals over a very broad size regime, from 0.8 to 12 nm. Contrary to the prevailing notion that polaron formation slows down charge-carrier cooling in lead-halide perovskites, no suppression of carrier cooling is observed in CsPbBr3 nanocrystals except for a slow cooling (over ∼10 ps) of "warm" electrons in the vicinity (within ∼0.1 eV) of the conduction band edge. At higher excess energies, electrons and holes cool with similar rates, on the order of 1 eV ps-1 carrier-1, increasing weakly with size. Our ab initio simulations suggest that cooling proceeds via fast phonon-mediated intraband transitions driven by strong and size-dependent electron-phonon coupling. The presented experimental and computational methods yield the spectrum of involved phonons and may guide the development of devices utilizing hot charge carriers.

15.
Chimia (Aarau) ; 75(5): 427-434, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34016236

RESUMO

In the last two decades, colloidal semiconductor nanocrystals have emerged as a phenomenal research topic due to their size-dependent optoelectronic properties and to their outstanding versatility in many technological applications. In this review, we provide an historical account of the most relevant computational works that have been carried out to understand atomistically the electronic structure of these materials, including the main requirements needed for the preparation of nanocrystal models that align well with the experiments. We further discuss how the advancement of these computational tools has affected the analysis of these nanomaterials over the years. We focus our review on the three main families of colloidal semiconductor nanocrystals: group II-VI and IV-VI metal chalcogenides, group III-V metal pnictogenides and metal halides, in particular lead-based halide perovskites. We discuss the most recent research frontiers and outline the future outlooks expected in this field from a computational perspective.

16.
J Am Chem Soc ; 142(22): 10198-10211, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32374173

RESUMO

We report the colloidal synthesis of a series of surfactant-stabilized lead chalcohalide nanocrystals. Our work is mainly focused on Pb4S3Br2, a chalcohalide phase unknown to date that does not belong to the ambient-pressure PbS-PbBr2 phase diagram. The Pb4S3Br2 nanocrystals herein feature a remarkably narrow size distribution (with a size dispersion as low as 5%), a good size tunability (from 7 to ∼30 nm), an indirect bandgap, photoconductivity (responsivity = 4 ± 1 mA/W), and stability for months in air. A crystal structure is proposed for this new material by combining the information from 3D electron diffraction and electron tomography of a single nanocrystal, X-ray powder diffraction, and density functional theory calculations. Such a structure is closely related to that of the recently discovered high-pressure chalcohalide Pb4S3I2 phase, and indeed we were able to extend our synthesis scheme to Pb4S3I2 colloidal nanocrystals, whose structure matches the one that has been published for the bulk. Finally, we could also prepare nanocrystals of Pb3S2Cl2, which proved to be a structural analogue of the recently reported bulk Pb3Se2Br2 phase. It is remarkable that one high-pressure structure (for Pb4S3I2) and two metastable structures that had not yet been reported (for Pb4S3Br2 and Pb3S2Cl2) can be prepared on the nanoscale by wet-chemical approaches. This highlights the important role of colloidal chemistry in the discovery of new materials and motivates further exploration into metal chalcohalide nanocrystals.

17.
Inorg Chem ; 59(1): 548-554, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31829568

RESUMO

An effort to synthesize the Cu(I) variant of a lead-free double perovskite isostructural with Cs2AgInCl6 resulted in the formation of Cs3Cu4In2Cl13 nanocrystals with an unusual structure, as revealed by single-nanocrystal three-dimensional electron diffraction. These nanocrystals adopt a A2BX6 structure (K2PtCl6 type, termed vacancy ordered perovskite) with tetrahedrally coordinated Cu(I) ions. In the structure, 25% of the A sites are occupied by [Cu4Cl]3+ clusters (75% by Cs+), and the B sites are occupied by In3+. Such a Cs3Cu4In2Cl13 compound prepared at the nanoscale is not known in the bulk and is an example of a multinary metal halide with inorganic cluster cations residing in A sites. The stability of the compound was supported by density functional theory calculations that also revealed that its bandgap is direct but parity forbidden. The existence of the Cs3Cu4In2Cl13 structure demonstrates that small inorganic cluster cations can occupy A sites in multinary metal halides.

18.
Nat Mater ; 17(1): 35-42, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29035357

RESUMO

Colloidal quantum dots (QDs) raise more and more interest as solution-processable and tunable optical gain materials. However, especially for infrared active QDs, optical gain remains inefficient. Since stimulated emission involves multifold degenerate band-edge states, population inversion can be attained only at high pump power and must compete with efficient multi-exciton recombination. Here, we show that mercury telluride (HgTe) QDs exhibit size-tunable stimulated emission throughout the near-infrared telecom window at thresholds unmatched by any QD studied before. We attribute this unique behaviour to surface-localized states in the bandgap that turn HgTe QDs into 4-level systems. The resulting long-lived population inversion induces amplified spontaneous emission under continuous-wave optical pumping at power levels compatible with solar irradiation and direct current electrical pumping. These results introduce an alternative approach for low-threshold QD-based gain media based on intentional trap states that paves the way for solution-processed infrared QD lasers and amplifiers.

19.
J Chem Inf Model ; 59(7): 3191-3197, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31260292

RESUMO

We present the QMflows Python package for quantum chemistry workflow automatization. QMflows allows users to write complex workflows in terms of simple Python scripts. It supports the development of interoperable workflows involving multiple quantum chemistry codes and executes them efficiently on large scale parallel computers. This open source library provides standardized interfaces to a number of quantum chemistry packages and can be easily extended to accommodate additional codes. QMflows features are described and illustrated with a number of representative applications.


Assuntos
Fenômenos Químicos , Compostos Orgânicos/química , Automação , Simulação por Computador , Modelos Químicos , Software
20.
Nano Lett ; 18(4): 2233-2242, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29498867

RESUMO

We perform ab initio molecular dynamics on experimentally relevant-sized lead sulfide (PbS) nanocrystals (NCs) constructed with thiol or Cl, Br, and I anion surfaces to determine their vibrational and dynamic electronic structure. We show that electron-phonon interactions can explain the large thermal broadening and fast carrier cooling rates experimentally observed in Pb-chalcogenide NCs. Furthermore, our simulations reveal that electron-phonon interactions are suppressed in halide-terminated NCs due to reduction of both the thermal displacement of surface atoms and the spatial overlap of the charge carriers with these large atomic vibrations. This work shows how surface engineering, guided by simulations, can be used to systematically control carrier dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA