Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Sci Food Agric ; 102(14): 6246-6254, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35491936

RESUMO

BACKGROUND: Conservative tillage techniques have several agro-ecological benefits for organic farming. The application of these techniques, however, can create quite a few challenges due to the increased weed competition. Here, we report the results of an organic field experiment in which the responses of wheat and weeds to no tillage (NT) were evaluated compared with conventional tillage (CT). We also tested the hypothesis that, under NT, moving up the sowing date, compared with using the ordinary sowing date for the study area, can result in increased competitiveness of the crop against weeds. Two wheat genotypes, a modern variety and an ancient landrace, were tested. RESULTS: Substantial reductions in grain yield and protein content were observed in wheat under NT than under CT when the ordinary sowing date was used. This was mainly due to the considerable increase in weed biomass under NT. The tillage system also altered the composition of weed flora, with some species favored under NT and others under CT. In general, early sowing mitigated the detrimental effect of NT on yield. The two genotypes responded differently to the treatments. The early sowing in the modern variety reduced but did not eliminate the advantages of CT over NT, whereas no appreciable differences in grain yield were observed between CT and NT in the landrace. CONCLUSION: Our results show clearly that, under organic management, using NT alone as a substitute for CT is not agronomically feasible. Moving up the sowing date and using a competitive genotype can help mitigate the negative effects of NT, but surely a more effective application of NT could be achieved by acting simultaneously on other factors of the cropping management system (e.g. crop rotation, fertilization strategy, type of seeder). © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Solo , Triticum , Agricultura/métodos , Biomassa , Grão Comestível , Triticum/genética
2.
Mycorrhiza ; 31(4): 441-454, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33893547

RESUMO

Many aspects concerning the role of arbuscular mycorrhizal (AM) fungi in plant nutrient uptake from organic sources remain unclear. Here, we investigated the contribution of AM symbiosis to N and P uptake by durum wheat after the addition of a high C:N biomass to a P-limited soil. Plants were grown in pots in the presence or absence of a multispecies AM inoculum, with (Org) or without (Ctr) the addition of 15N-labelled organic matter (OM). A further treatment, in which 15N was applied in mineral form (Ctr+N) in the same amount as that supplied in the Org treatment, was also included. Inoculation with AM had positive effects on plant growth in both control treatments (Ctr and Ctr+N), mainly linked to an increase in plant P uptake. The addition of OM, increasing the P available in the soil for the plants, resulted in a marked decrease in the contribution of AM symbiosis to plant growth and nutrient uptake, although the percentage of mycorrhization was higher in the Org treatment than in the controls. In addition, mycorrhization drastically reduced the recovery of 15N from the OM added to the soil whereas it slightly increased the N recovery from the mineral fertiliser. This suggests that plants and AM fungi probably exert a differential competition for different sources of N available in the soil. On the whole, our results provide a contribution to a better understanding of the conditions under which AM fungi can play an effective role in mitigating the negative effects of nutritional stresses in plants.


Assuntos
Micorrizas , Raízes de Plantas , Solo , Simbiose , Triticum
3.
Mol Biol Rep ; 46(5): 5163-5174, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31327121

RESUMO

Arbuscular mycorrhizal fungi (AMF) are soil microrganisms that establish symbiosis with plants positively influencing their resistance to abiotic stresses. The aim of this work was to identify wheat miRNAs differentially regulated by water deficit conditions in presence or absence of AMF treatment. Small RNA libraries were constructed for both leaf and root tissues considering four conditions: control (irrigated) or water deficit in presence/absence of mycorrhizal (AMF) treatment. A total of 12 miRNAs were significantly regulated by water deficit in leaves: five in absence and seven in presence of AMF treatment. In roots, three miRNAs were water deficit-modulated in absence of mycorrhizal treatment while six were regulated in presence of it. The most represented miRNA family was miR167 that was regulated by water deficit in both leaf and root tissues. Interestingly, miR827-5p was differentially regulated in leaves in the absence of mycorrhizal treatment while it was water deficit-modulated in roots irrespective of AMF treatment. In roots, water deficit repressed miR827-5p, miR394, miR6187, miR167e-3p, and miR9666b-3p affecting transcription, RNA synthesis, protein synthesis, and protein modifications. In leaves, mycorrhizae modulated miR5384-3p and miR156e-3p affecting trafficking and cell redox homeostasis. DNA replication and transcription regulation should be targeted by the repression of miR1432-5p and miR166h-3p. This work provided interesting insights into the post-transcriptional mechanisms of wheat responses to water deficit in relation to mycorrhizal symbiosis.


Assuntos
Redes Reguladoras de Genes , MicroRNAs/genética , Micorrizas/fisiologia , Triticum/crescimento & desenvolvimento , Secas , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , RNA de Plantas/genética , Estresse Fisiológico , Triticum/genética , Triticum/microbiologia
4.
Front Plant Sci ; 14: 1302337, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023895

RESUMO

Nitrate uptake by plants primarily relies on two gene families: Nitrate transporter 1/peptide transporter (NPF) and Nitrate transporter 2 (NRT2). Here, we extensively characterized the NPF and NRT2 families in the durum wheat genome, revealing 211 NPF and 20 NRT2 genes. The two families share many Cis Regulatory Elements (CREs) and Transcription Factor binding sites, highlighting a partially overlapping regulatory system and suggesting a coordinated response for nitrate transport and utilization. Analyzing RNA-seq data from 9 tissues and 20 cultivars, we explored expression profiles and co-expression relationships of both gene families. We observed a strong correlation between nucleotide variation and gene expression within the NRT2 gene family, implicating a shared selection mechanism operating on both coding and regulatory regions. Furthermore, NPF genes showed highly tissue-specific expression profiles, while NRT2s were mainly divided in two co-expression modules, one expressed in roots (NAR2/NRT3 dependent) and the other induced in anthers and/ovaries during maturation. Our evidences confirmed that the majority of these genes were retained after small-scale duplication events, suggesting a neo- or sub-functionalization of many NPFs and NRT2s. Altogether, these findings indicate that the expansion of these gene families in durum wheat could provide valuable genetic variability useful to identify NUE-related and candidate genes for future breeding programs in the context of low-impact and sustainable agriculture.

5.
Sci Rep ; 13(1): 116, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596823

RESUMO

The salinity of soil is a relevant environmental problem around the world, with climate change raising its relevance, particularly in arid and semiarid areas. Arbuscular Mycorrhizal Fungi (AMF) positively affect plant growth and health by mitigating biotic and abiotic stresses, including salt stress. The mechanisms through which these benefits manifest are, however, still unclear. This work aimed to identify key genes involved in the response to salt stress induced by AMF using RNA-Seq analysis on durum wheat (Triticum turgidum L. subsp. durum Desf. Husn.). Five hundred sixty-three differentially expressed genes (DEGs), many of which involved in pathways related to plant stress responses, were identified. The expression of genes involved in trehalose metabolism, RNA processing, vesicle trafficking, cell wall organization, and signal transduction was significantly enhanced by the AMF symbiosis. A downregulation of genes involved in both enzymatic and non-enzymatic oxidative stress responses as well as amino acids, lipids, and carbohydrates metabolisms was also detected, suggesting a lower oxidative stress condition in the AMF inoculated plants. Interestingly, many transcription factor families, including WRKY, NAC, and MYB, already known for their key role in plant abiotic stress response, were found differentially expressed between treatments. This study provides valuable insights on AMF-induced gene expression modulation and the beneficial effects of plant-AMF interaction in durum wheat under salt stress.


Assuntos
Micorrizas , Transcriptoma , Triticum/metabolismo , Simbiose/fisiologia , Raízes de Plantas/metabolismo , Tolerância ao Sal/genética , Micorrizas/fisiologia
6.
Environ Pollut ; 334: 122146, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37419209

RESUMO

Soil contamination with microplastics may adversely affect soil properties and functions and consequently crop productivity. In this study, we wanted to verify whether the adverse effects of microplastics in the soil on maize plants (Zea mays L.) are due to a reduction in nitrogen (N) availability and a reduced capacity to establish symbiotic relationships with arbuscular mycorrhizal (AM) fungi. To do this, we performed a pot experiment in which a clayey soil was exposed to two environmentally relevant concentrations of polypropylene (PP; one of the most used plastic materials) microfibers (0.4% and 0.8% w/w) with or without the addition of N fertilizer and with or without inoculation with AM fungi. The experiment began after the soil had been incubated at 23 °C for 5 months. Soil contamination with PP considerably reduced maize root and shoot biomass, leaf area, N uptake, and N content in tissue. The adverse effects increased with the concentration of PP in the soil. Adding N to the soil did not alleviate the detrimental effects of PP on plant growth, which suggests that other factors besides N availability played a major role. Similarly, although the presence of PP did not inhibit root colonization by AM fungi (no differences were observed for this trait between the uncontaminated and PP-contaminated soils), the addition of the fungal inoculum to the soil failed to mitigate the negative impact of PP on maize growth. Quite the opposite: mycorrhization further reduced maize root biomass accumulation. Undoubtedly, much research remains to be done to shed light on the mechanisms involved in determining plant behavior in microplastic-contaminated soils, which are most likely complex. This research is a priority given the magnitude of this contamination and its potential implications for human and environmental health.


Assuntos
Micorrizas , Poluentes do Solo , Humanos , Micorrizas/química , Zea mays , Polipropilenos , Plásticos/farmacologia , Raízes de Plantas , Solo , Nitrogênio/farmacologia , Microplásticos , Fertilização , Poluentes do Solo/análise , Fungos
7.
Food Res Int ; 140: 110029, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33648257

RESUMO

Several studies showed that products made with ancient wheat genotypes have beneficial health properties compared to those obtained with modern wheat varieties, even though the mechanisms responsible for the positive effects are not clear. Ancient durum wheat genotypes are being currently used for the production of pasta, bread and other typical bakery products but the consumption is strictly local. In this work 15 genotypes of Triticum turgidum subsp. durum, including 10 ancient and 5 modern, were characterized for their technological traits through the determination of different parameters: protein content, dry gluten, gluten index, yellow index, ash, P/L, W and G. In addition, the baking aptitude of all genotypes was evaluated. All semolinas were subjected to leavening by commercial baker's yeast and the experimental breads were subjected to the qualitative characterization (weight loss, height, firmness, colour, volatile organic compounds, image and sensory analysis). The results obtained showed that protein content of grains and semolinas was higher in ancient rather than modern genotypes. Dry gluten ranged from 6.7% of the modern variety Simeto to 13.6% of the ancient genotype Scorsonera. Great differences were found for the yellow index which reached the highest value in Saragolla variety. The P/L and W ratios were significantly higher for the modern genotypes. On average, weight loss was about 14 g, while bread height varied significantly between the trials. Bread consistency varied between 12.6 and 31.3 N. Differences were observed for the yellow of the crumb (higher for modern genotypes) and for the redness of the crust (higher for ancient genotypes). The sensory evaluation displayed a high variability among the breads from the 10 ancient genotypes, while the control breads received scores closed to those of the modern genotypes. This study revealed that the modern durum wheat varieties showed a certain uniformity of behaviour, while the ancient genotypes exhibited a great variability of the final attributes of breads.


Assuntos
Pão , Triticum , Pão/análise , Grão Comestível , Genótipo , Saccharomyces cerevisiae/genética , Triticum/genética
8.
Front Plant Sci ; 11: 760, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32636854

RESUMO

Plant performance is strongly dependent on nitrogen (N), and thus increasing N nutrition is of great relevance for the productivity of agroecosystems. The effects of arbuscular mycorrhizal (AM) fungi on plant N acquisition are debated because contradictory results have been reported. Using 15N-labeled fertilizers as a tracer, we evaluated the effects of AM fungi on N uptake and recovery from mineral or organic sources in durum wheat. Under sufficient N availability, AM fungi had no effects on plant biomass but increased N concentrations in plant tissue, plant N uptake, and total N recovered from the fertilizer. In N-deficient soil, AM fungi led to decreased aboveground biomass, which suggests that plants and AM fungi may have competed for N. When the organic source had a low C:N ratio, AM fungi favored both plant N uptake and N recovery. In contrast, when the organic source had a high C:N ratio, a clear reduction in N recovery from the fertilizer was observed. Overall, the results indicate an active role of arbuscular mycorrhizae in favoring plant N-related traits when N is not a limiting factor and show that these fungi help in N recovery from the fertilizer. These results hold great potential for increasing the sustainability of durum wheat production.

9.
PLoS One ; 14(3): e0213672, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30856237

RESUMO

Arbuscular mycorrhizal fungi (AMF) can play a key role in natural and agricultural ecosystems affecting plant nutrition, soil biological activity and modifying the availability of nutrients by plants. This research aimed at expanding the knowledge of the role played by AMF in the uptake of macro- and micronutrients and N transfer (using a 15N stem-labelling method) in a faba bean/wheat intercropping system. It also investigates the role of AMF in biological N fixation (using the natural isotopic abundance method) in faba bean grown in pure stand and in mixture. Finally, it examines the role of AMF in driving competition and facilitation between faba bean and wheat. Durum wheat and faba bean were grown in pots (five pots per treatment) as sole crops or in mixture in the presence or absence of AMF. Root colonisation by AMF was greater in faba bean than in wheat and increased when species were mixed compared to pure stand (particularly for faba bean). Mycorrhizal symbiosis positively influenced root biomass, specific root length, and root density and increased the uptake of P, Fe, and Zn in wheat (both in pure stand and in mixture) but not in faba bean. Furthermore, AMF symbiosis increased the percentage of N derived from the atmosphere in the total N biomass of faba bean grown in mixture (+20%) but not in pure stand. Nitrogen transfer from faba bean to wheat was low (2.5-3.0 mg pot-1); inoculation with AMF increased N transfer by 20%. Overall, in terms of above- and belowground growth and uptake of nutrients, mycorrhization favoured the stronger competitor in the mixture (wheat) without negatively affecting the companion species (faba bean). Results of this study confirm the role of AMF in driving biological interactions among neighbouring plants.


Assuntos
Micorrizas/crescimento & desenvolvimento , Fixação de Nitrogênio , Triticum/crescimento & desenvolvimento , Vicia faba/crescimento & desenvolvimento , Agricultura/métodos , Biomassa , Produtos Agrícolas/crescimento & desenvolvimento , Ecossistema , Nitrogênio , Nutrientes , Fósforo , Raízes de Plantas/crescimento & desenvolvimento , Solo , Simbiose
10.
Front Microbiol ; 10: 744, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031726

RESUMO

With growing populations and climate change, assuring food and nutrition security is an increasingly challenging task. Climate-smart and sustainable agriculture, that is, conceiving agriculture to be resistant and resilient to a changing climate while keeping it viable in the long term, is probably the best solution. The role of soil biota and particularly arbuscular mycorrhizal (AM) fungi in this new agriculture is believed to be of paramount importance. However, the large nutrient pools and the microbiota of subsoils are rarely considered in the equation. Here we explore the potential contributions of subsoil AM fungi to a reduced and more efficient fertilization, carbon sequestration, and reduction of greenhouse gas emissions in agriculture. We discuss the use of crop rotations and cover cropping with deep rooting mycorrhizal plants, and low-disturbance management, as means of fostering subsoil AM communities. Finally, we suggest future research goals that would allow us to maximize these benefits.

11.
PLoS One ; 12(9): e0184158, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28877207

RESUMO

Arbuscular mycorrhizal (AM) symbiosis is generally considered to be effective in ameliorating the plant tolerance to salt stress. Unfortunately, the comprehension of the mechanisms implicated in salinity stress alleviation by AM symbiosis is far from being complete. Thus, an experiment was performed by growing durum wheat (Triticum durum Desf.) plants under salt-stress conditions to evaluate the influence of AM symbiosis on both the plant growth and the regulation of a number of genes related to salt stress and nutrient uptake. Durum wheat plants were grown outdoors in pots in absence or in presence of salt stress and with or without AM fungi inoculation. The inoculum consisted of a mixture of spores of Rhizophagus irregularis (formerly Glomus intraradices) and Funneliformis mosseae (formerly G. mosseae). Results indicate that AM symbiosis can alleviate the detrimental effects of salt stress on the growth of durum wheat plants. In fact, under salt stress conditions mycorrhizal plants produced more aboveground and root biomass, had higher N uptake and aboveground N concentration, and showed greater stability of plasma membranes compared to non-mycorrhizal plants. Inoculation with AM fungi had no effect on the expression of the N transporter genes AMT1.1, AMT1.2, and NAR2.2, either under no-stress or salt stress conditions, probably due to the fact that plants were grown under optimal N conditions; on the contrary, NRT1.1 was always upregulated by AM symbiosis. Moreover, the level of expression of the drought stress-related genes AQP1, AQP4, PIP1, DREB5, and DHN15.3 observed in the mycorrhizal stressed plants was markedly lower than that observed in the non-mycorrhizal stressed plants and very close to that observed in the non-stressed plants. Our hypothesis is that, in the present study, AM symbiosis did not increase the plant tolerance to salt stress but instead generated a condition in which plants were subjected to a level of salt stress lower than that of non-mycorrhizal plants.


Assuntos
Micorrizas/fisiologia , Tolerância ao Sal , Simbiose/fisiologia , Triticum/microbiologia , Perfilação da Expressão Gênica , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Reação em Cadeia da Polimerase , Tolerância ao Sal/fisiologia , Triticum/crescimento & desenvolvimento , Triticum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA