Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Biotechnol Bioeng ; 120(2): 511-523, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36321324

RESUMO

To realize lignocellulose-based bioeconomy, efficient conversion of xylose into valuable chemicals by microbes is necessary. Xylose oxidative pathways that oxidize xylose into xylonate can be more advantageous than conventional xylose assimilation pathways because of fewer reaction steps without loss of carbon and ATP. Moreover, commodity chemicals like 3,4-dihydroxybutyrate and 3-hydroxybutyrolactone can be produced from the intermediates of xylose oxidative pathway. However, successful implementations of xylose oxidative pathway in yeast have been hindered because of the secretion and accumulation of xylonate which is a key intermediate of the pathway, leading to low yield of target product. Here, high-yield production of 3,4-dihydroxybutyrate from xylose by engineered yeast was achieved through genetic and environmental perturbations. Specifically, 3,4-dihydroxybutyrate biosynthetic pathway was established in yeast through deletion of ADH6 and overexpression of yneI. Also, inspired by the mismatch of pH between host strain and key enzyme of XylD, alkaline fermentations (pH ≥ 7.0) were performed to minimize xylonate accumulation. Under the alkaline conditions, xylonate was re-assimilated by engineered yeast and combined product yields of 3,4-dihydroxybutyrate and 3-hydroxybutyrolactone resulted in 0.791 mol/mol-xylose, which is highest compared with previous study. These results shed light on the utility of the xylose oxidative pathway in yeast.


Assuntos
Saccharomyces cerevisiae , Xilose , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Engenharia Metabólica/métodos , Fermentação
2.
Biotechnol Bioeng ; 120(4): 1097-1107, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36575132

RESUMO

4-hydroxybenzoic acid (4-HBA) is an industrially important aromatic compound, and there is an urgent need to establish a bioprocess to produce this compound in a sustainable and environmentally friendly manner from renewable feedstocks such as cellulosic biomass. Here, we developed a bioprocess to directly produce 4-HBA from cellulose using a recombinant Pichia pastoris strain that displays heterologous cellulolytic enzymes on its cell surface via the glycosylphosphatidylinositol (GPI)-anchoring system. ß-glucosidase (BGL) from Aspergillus aculeatus, endoglucanase (EG) from Trichoderma reesei, and cellobiohydrolase (CBH) from Talaromyces emersonii were co-displayed on the cell surface of P. pastoris using an appropriate GPI-anchoring domain for each enzyme. The cell-surface cellulase activity was further enhanced using P. pastoris SPI1 promoter- and secretion signal sequences. The resulting strains efficiently hydrolyzed phosphoric acid swollen cellulose (PASC) to glucose. Then, we expressed a highly 4-HBA-resistant chorismate pyruvate-lyase (UbiC) from Providencia rustigianii in the cellulase-displaying strain. This strain produced 975 mg/L of 4-HBA from PASC, which corresponding to 36.8% of the theoretical maximum yield, after 96 h of batch fermentation without the addition of commercial cellulase. This 4-HBA yield was over two times higher than that obtained from glucose (12.3% of the theoretical maximum yield). To our knowledge, this is the first report on the direct production of an aromatic compound from cellulose using cellulase-displaying yeast.


Assuntos
Celulase , Celulase/metabolismo , Celulose/metabolismo , Saccharomyces cerevisiae/metabolismo , Glucose/metabolismo
3.
Appl Microbiol Biotechnol ; 106(18): 6347-6361, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35951080

RESUMO

Consolidated bioprocessing (CBP) remains an attractive option for the production of commodity products from pretreated lignocellulose if a process-suitable organism can be engineered. The yeast Saccharomyces cerevisiae requires engineered cellulolytic activity to enable its use in CBP production of second-generation (2G) bioethanol. A promising strategy for heterologous cellulase production in yeast entails displaying enzymes on the cell surface by means of glycosylphosphatidylinositol (GPI) anchors. While strains producing a core set of cell-adhered cellulases that enabled crystalline cellulose hydrolysis have been created, secreted levels of enzyme were insufficient for complete cellulose hydrolysis. In fact, all reported recombinant yeast CBP candidates must overcome the drawback of generally low secretion titers. Rational strain engineering can be applied to enhance the secretion phenotype. This study aimed to improve the amount of cell-adhered cellulase activities of recombinant S. cerevisiae strains expressing a core set of four cellulases, through overexpression of genes that were previously shown to enhance cellulase secretion. Results showed significant increases in cellulolytic activity for all cell-adhered cellulase enzyme types. Cell-adhered cellobiohydrolase activity was improved by up to 101%, ß-glucosidase activity by up to 99%, and endoglucanase activity by up to 231%. Improved hydrolysis of crystalline cellulose of up to 186% and improved ethanol yields from this substrate of 40-50% in different strain backgrounds were also observed. In addition, improvement in resistance to fermentation stressors was noted in some strains. These strains represent a step towards more efficient organisms for use in 2G biofuel production. KEY POINTS: • Cell-surface-adhered cellulase activity was improved in strains engineered for CBP. • Levels of improvement of activity were strain and enzyme dependent. • Crystalline cellulose conversion to ethanol could be improved up to 50%.


Assuntos
Celulase , Celulases , Celulase/genética , Celulase/metabolismo , Celulases/metabolismo , Celulose/metabolismo , Etanol/metabolismo , Fermentação , Saccharomyces cerevisiae/metabolismo
4.
Appl Microbiol Biotechnol ; 105(14-15): 5895-5904, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34272577

RESUMO

The expression of functional proteins on the cell surface using glycosylphosphatidylinositol (GPI)-anchoring technology is a promising approach for constructing yeast cells with special functions. The functionality of surface-engineered yeast strains strongly depends on the amount of functional proteins displayed on their cell surface. On the other hand, since the yeast cell wall space is finite, heterologous protein carrying capacity of the cell wall is limited. Here, we report the effect of CCW12 and CCW14 knockout, which encode major nonenzymatic GPI-anchored cell wall proteins (GPI-CWPs) involved in the cell wall organization, on the heterologous protein carrying capacity of yeast cell wall. Aspergillus aculeatus ß-glucosidase (BGL) was used as a reporter to evaluate the protein carrying capacity in Saccharomyces cerevisiae. No significant difference in the amount of cell wall-associated BGL and cell-surface BGL activity was observed between CCW12 and CCW14 knockout strains and their control strain. In contrast, in the CCW12 and CCW14 co-knockout strains, the amount of cell wall-associated BGL and its activity were approximately 1.4-fold higher than those of the control strain and CCW12 or CCW14 knockout strains. Electron microscopic observation revealed that the total cell wall thickness of the CCW12 and CCW14 co-knockout strains was increased compared to the parental strain, suggesting a potential increase in heterologous protein carrying capacity of the cell wall. These results indicate that the CCW12 and CCW14 co-knockout strains are a promising host for the construction of highly functional recombinant yeast strains using cell-surface display technology. KEY POINTS: • CCW12 and/or CCW14 of a BGL-displaying S. cerevisiae strain were knocked out. • CCW12 and CCW14 co-disruption improved the display efficiency of BGL. • The thickness of the yeast cell wall was increased upon CCW12 and CCW14 knockout.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Aspergillus , Parede Celular , Glicosilfosfatidilinositóis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Metab Eng ; 57: 110-117, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31715252

RESUMO

The yeast cell surface provides space to display functional proteins. Heterologous proteins can be covalently anchored to the yeast cell wall by fusing them with the anchoring domain of glycosylphosphatidylinositol (GPI)-anchored cell wall proteins (GPI-CWPs). In the yeast cell-surface display system, the anchorage position of the target protein in the cell wall is an important factor that maximizes the capabilities of engineered yeast cells because the yeast cell wall consists of a 100- to 200-nm-thick microfibrillar array of glucan chains. However, knowledge is limited regarding the anchorage position of GPI-attached proteins in the yeast cell wall. Here, we report a comparative study on the effect of GPI-anchoring domain-heterologous protein fusions on yeast cell wall localization. GPI-anchoring domains derived from well-characterized GPI-CWPs, namely Sed1p and Sag1p, were used for the cell-surface display of heterologous proteins in the yeast Saccharomyces cerevisiae. Immunoelectron-microscopic analysis of enhanced green fluorescent protein (eGFP)-displaying cells revealed that the anchorage position of the GPI-attached protein in the cell wall could be controlled by changing the fused anchoring domain. eGFP fused with the Sed1-anchoring domain predominantly localized to the external surface of the cell wall, whereas the anchorage position of eGFP fused with the Sag1-anchoring domain was mainly inside the cell wall. We also demonstrate the application of the anchorage position control technique to improve the cellulolytic ability of cellulase-displaying yeast. The ethanol titer during the simultaneous saccharification and fermentation of hydrothermally-processed rice straw was improved by 30% after repositioning the exo- and endo-cellulases using Sed1- and Sag1-anchor domains. This novel anchorage position control strategy will enable the efficient utilization of the cell wall space in various fields of yeast cell-surface display technology.


Assuntos
Técnicas de Visualização da Superfície Celular , Parede Celular , Glicosilfosfatidilinositóis , Glicoproteínas de Membrana , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Parede Celular/genética , Parede Celular/metabolismo , Glicosilfosfatidilinositóis/genética , Glicosilfosfatidilinositóis/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Metab Eng ; 56: 17-27, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31434008

RESUMO

1,2,4-Butanetriol can be used to produce energetic plasticizer as well as several pharmaceutical compounds. Although Saccharomyces cerevisiae has some attractive characters such as high robustness for industrial production of useful chemicals by fermentation, 1,2,4-butanetriol production by S. cerevisiae has not been reported. 1,2,4-butanteriotl is produced by an oxidative xylose metabolic pathway completely different from the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways conventionally used for xylose assimilation in S. cerevisiae. In the present study, S. cerevisiae was engineered to produce 1,2,4-butanetriol by overexpression of xylose dehydrogenase (XylB), xylonate dehydratase (XylD), and 2-ketoacid decarboxylase. Further improvement of the recombinant strain was performed by the screening of optimal 2-ketoacid decarboxylase suitable for 1,2,4-butanetriol production and the enhancement of Fe uptake ability to improve the XylD enzymatic activity. Eventually, 1.7 g/L of 1,2,4-butanetriol was produced from 10 g/L xylose with a molar yield of 24.5%. Furthermore, 1.1 g/L of 1,2,4-butanetriol was successfully produced by direct fermentation of rice straw hydrolysate.


Assuntos
Butanóis/metabolismo , Ferro/metabolismo , Engenharia Metabólica , Microrganismos Geneticamente Modificados , Saccharomyces cerevisiae , Xilose/metabolismo , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
Microb Cell Fact ; 17(1): 153, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30253773

RESUMO

BACKGROUND: Following cellulose, chitin is the most abundant renewable resource and is composed of the monomeric amino sugar N-acetyl-D-glucosamine (GlcNAc). Although many yeasts, including Saccharomyces cerevisiae, have lost their ability to utilize GlcNAc, some yeasts are able to use GlcNAc as a carbon source. However, our understanding of the effects of GlcNAc on the intracellular metabolism of nitrogen-containing compounds in these yeast species is limited. RESULTS: In the present study, we quantitatively investigated the metabolic responses to GlcNAc in the GlcNAc-assimilating yeast Scheffersomyces stipitis (formerly known as Pichia stipitis) using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). The comprehensive analysis of the metabolites extracted from S. stipitis cells grown in glucose, xylose, or GlcNAc revealed increased intracellular accumulation of a wide range of nitrogen-containing compounds during GlcNAc assimilation in this yeast. The levels of aromatic, branched-chain, and sulfur-containing amino acids and adenine, guanine, and cytosine nucleotides were the highest in GlcNAc-grown cells. CONCLUSIONS: The CE-TOFMS analysis revealed a positive effect for GlcNAc on the intracellular concentration of a wide range of nitrogen-containing compounds. The metabolomic data gathered in this study will be useful for designing effective genetic engineering strategies to develop novel S. stipitis strains for the production of valuable nitrogen-containing compounds from GlcNAc.


Assuntos
Acetilglucosamina/metabolismo , Saccharomycetales/metabolismo , Glucose/metabolismo , Espectrometria de Massas , Redes e Vias Metabólicas , Metaboloma , Nitrogênio/metabolismo , Saccharomycetales/genética , Xilose/metabolismo
8.
Biotechnol Bioeng ; 114(6): 1201-1207, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28112385

RESUMO

Crystalline cellulose is one of the major contributors to the recalcitrance of lignocellulose to degradation, necessitating high dosages of cellulase to digest, thereby impeding the economic feasibility of cellulosic biofuels. Several recombinant cellulolytic yeast strains have been developed to reduce the cost of enzyme addition, but few of these strains are able to efficiently degrade crystalline cellulose due to their low cellulolytic activities. Here, by combining the cellulase ratio optimization with a novel screening strategy, we successfully improved the cellulolytic activity of a Saccharomyces cerevisiae strain displaying four different synergistic cellulases on the cell surface. The optimized strain exhibited an ethanol yield from Avicel of 57% of the theoretical maximum, and a 60% increase of ethanol titer from rice straw. To our knowledge, this work is the first optimization of the degradation of crystalline cellulose by tuning the cellulase ratio in a cellulase cell-surface display system. This work provides key insights in engineering the cellulase cocktail in a consolidated bioprocessing yeast strain. Biotechnol. Bioeng. 2017;114: 1201-1207. © 2017 Wiley Periodicals, Inc.


Assuntos
Celulase/fisiologia , Celulose/metabolismo , Etanol/metabolismo , Melhoramento Genético/métodos , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/fisiologia , Celulose/química , Cristalização , Ativação Enzimática , Etanol/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Especificidade por Substrato
9.
Biotechnol Bioeng ; 113(11): 2358-66, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27183011

RESUMO

Recombinant yeast strains displaying aheterologous cellulolytic enzymes on their cell surfaces using a glycosylphosphatidylinositol (GPI) anchoring system are a promising strategy for bioethanol production from lignocellulosic materials. A crucial step for cell wall localization of the enzymes is the intracellular transport of proteins in yeast cells. Therefore, the addition of a highly efficient secretion signal sequence is important to increase the amount of the enzymes on the yeast cell surface. In this study, we demonstrated the effectiveness of a novel signal peptide (SP) sequence derived from the Saccharomyces cerevisiae SED1 gene for cell-surface display and secretory production of cellulolytic enzymes. Gene cassettes with SP sequences derived from S. cerevisiae SED1 (SED1SP), Rhizopus oryzae glucoamylase (GLUASP), and S. cerevisiae α-mating pheromone (MFα1SP) were constructed for cell-surface display of Aspergillus aculeatus ß-glucosidase (BGL1) and Trichoderma reesei endoglucanase II (EGII). These gene cassettes were integrated into the S. cerevisiae genome. The recombinant strains with the SED1SP showed higher cell-surface BGL and EG activities than those with the conventional SP sequences (GLUASP and MFα1SP). The novel SP sequence also improved the secretory production of BGL and EG in S. cerevisiae. The extracellular BGL activity of the recombinant strains with the SED1SP was 1.3- and 1.9-fold higher than the GLUASP and MFα1SP strains, respectively. Moreover, the utilization of SED1SP successfully enhanced the secretory production of BGL in Pichia pastoris. The utilization of the novel SP sequence is a promising option for highly efficient cell-surface display and secretory production of heterologous proteins in various yeast species. Biotechnol. Bioeng. 2016;113: 2358-2366. © 2016 Wiley Periodicals, Inc.


Assuntos
Membrana Celular/metabolismo , Celulase/metabolismo , Melhoramento Genético/métodos , Glicoproteínas de Membrana/genética , Proteínas Recombinantes/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Glicoproteínas de Membrana/metabolismo , Engenharia de Proteínas/métodos , Transporte Proteico/genética , Proteínas Recombinantes/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Appl Microbiol Biotechnol ; 100(8): 3477-87, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26631184

RESUMO

Xylitol, a value-added polyol deriving from D-xylose, is widely used in both the food and pharmaceutical industries. Despite extensive studies aiming to streamline the production of xylitol, the manufacturing cost of this product remains high while demand is constantly growing worldwide. Biotechnological production of xylitol from lignocellulosic waste may constitute an advantageous and sustainable option to address this issue. However, to date, there have been few reports of biomass conversion to xylitol. In the present study, xylitol was directly produced from rice straw hydrolysate using a recombinant Saccharomyces cerevisiae YPH499 strain expressing cytosolic xylose reductase (XR), along with ß-glucosidase (BGL), xylosidase (XYL), and xylanase (XYN) enzymes (co-)displayed on the cell surface; xylitol production by this strain did not require addition of any commercial enzymes. All of these enzymes contributed to the consolidated bioprocessing (CBP) of the lignocellulosic hydrolysate to xylitol to produce 5.8 g/L xylitol with 79.5 % of theoretical yield from xylose contained in the biomass. Furthermore, nanofiltration of the rice straw hydrolysate provided removal of fermentation inhibitors while simultaneously increasing sugar concentrations, facilitating high concentration xylitol production (37.9 g/L) in the CBP. This study is the first report (to our knowledge) of the combination of cell surface engineering approach and membrane separation technology for xylitol production, which could be extended to further industrial applications.


Assuntos
Engenharia Celular/métodos , Filtração/métodos , Microbiologia Industrial/métodos , Oryza/microbiologia , Saccharomyces cerevisiae/metabolismo , Xilitol/biossíntese , Meios de Cultura/metabolismo , Fermentação , Hidrólise , Oryza/química , Caules de Planta/química , Caules de Planta/microbiologia , Saccharomyces cerevisiae/genética , Xilose/metabolismo
11.
Appl Microbiol Biotechnol ; 99(4): 1655-63, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25432675

RESUMO

Recombinant yeast strains that display heterologous amylolytic enzymes on their cell surface via the glycosylphosphatidylinositol (GPI)-anchoring system are considered as promising biocatalysts for direct ethanol production from starchy materials. For the effective hydrolysis of these materials, the ratio optimization of multienzyme activity displayed on the cell surface is important. In this study, we have presented a ratio control system of multienzymes displayed on the yeast cell surface by using different GPI-anchoring domains. The novel gene cassettes for the cell-surface display of Streptococcus bovis α-amylase and Rhizopus oryzae glucoamylase were constructed using the Saccharomyces cerevisiae SED1 promoter and two different GPI-anchoring regions derived from Saccharomyces cerevisiae SED1 or SAG1. These gene cassettes were integrated into the Saccharomyces cerevisiae genome in different combinations. Then, the cell-surface α-amylase and glucoamylase activities and ethanol productivity of these recombinant strains were evaluated. The combinations of the gene cassettes of these enzymes affected the ratio of cell-surface α-amylase and glucoamylase activities and ethanol productivity of the recombinant strains. The highest ethanol productivity from raw starch was achieved by the strain harboring one α-amylase gene cassette carrying the SED1-anchoring region and two glucoamylase gene cassettes carrying the SED1-anchoring region (BY-AASS/GASS/GASS). This strain yielded 22.5 ± 0.6 g/L of ethanol from 100 g/L of raw starch in 120 h of fermentation.


Assuntos
Técnicas de Visualização da Superfície Celular/métodos , Etanol/metabolismo , Glucana 1,4-alfa-Glucosidase/metabolismo , Rhizopus/enzimologia , Saccharomyces cerevisiae/enzimologia , Streptococcus bovis/enzimologia , alfa-Amilases/metabolismo , Clonagem Molecular , Expressão Gênica , Glucana 1,4-alfa-Glucosidase/genética , Mutagênese Insercional , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhizopus/genética , Saccharomyces cerevisiae/genética , Amido/metabolismo , Streptococcus bovis/genética , alfa-Amilases/genética
12.
Sci Rep ; 14(1): 18540, 2024 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122907

RESUMO

Cellobiose has received increasing attention in various industrial sectors, ranging from food and feed to cosmetics. The development of large-scale cellobiose applications requires a cost-effective production technology as currently used methods based on cellulose hydrolysis are costly. Here, a one-pot synthesis of cellobiose from sucrose was conducted using a recombinant Pichia pastoris strain as a reusable whole-cell biocatalyst. Thermophilic sucrose phosphorylase from Bifidobacterium longum (BlSP) and cellobiose phosphorylase from Clostridium stercorarium (CsCBP) were co-displayed on the cell surface of P. pastoris via a glycosylphosphatidylinositol-anchoring system. Cells of the BlSP and CsCBP co-displaying P. pastoris strain were used as whole-cell biocatalysts to convert sucrose to cellobiose with commercial thermophilic xylose isomerase. Cellobiose productivity significantly improved with yeast cells grown on glycerol compared to glucose-grown cells. In one-pot bioconversion using glycerol-grown yeast cells, approximately 81.2 g/L of cellobiose was produced from 100 g/L of sucrose, corresponding to 81.2% of the theoretical maximum yield, within 24 h at 60 °C. Moreover, recombinant yeast cells maintained a cellobiose titer > 80 g/L, even after three consecutive cell-recycling one-pot bioconversion cycles. These results indicated that one-pot bioconversion using yeast cells displaying two phosphorylases as whole-cell catalysts is a promising approach for cost-effective cellobiose production.


Assuntos
Biocatálise , Celobiose , Glucosiltransferases , Sacarose , Celobiose/metabolismo , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Sacarose/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Saccharomycetales/enzimologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Clostridium/enzimologia , Clostridium/genética
13.
Sci Rep ; 13(1): 12313, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516730

RESUMO

Chondroitin sulfate (CS) is a family of glycosaminoglycans and have a wide range of applications in dietary supplements and pharmaceutical drugs. In this study, we evaluated the effects of several types of CS, differing in their sulfated positions, on the human colonic microbiota and their metabolites. CS (CSA, CSC, and CSE) and non-sulfated chondroitin (CH) were added into an in vitro human colonic microbiota model with fecal samples from 10 healthy individuals. CS addition showed a tendency to increase the relative abundance of Bacteroides, Eubacterium, and Faecalibacterium, and CSC and CSE addition significantly increased the total number of eubacteria in the culture of the Kobe University Human Intestinal Microbiota Model. CSE addition also resulted in a significant increase in short-chain fatty acid (SCFA) levels. Furthermore, addition with CSC and CSE increased the levels of a wide range of metabolites including lysine, ornithine, and Ile-Pro-Pro, which could have beneficial effects on the host. However, significant increases in the total number of eubacteria, relative abundance of Bacteroides, and SCFA levels were also observed after addition with CH, and the trends in the effects of CH addition on metabolite concentrations were identical to those of CSC and CSE addition. These results provide novel insight into the contribution of the colonic microbiota to the beneficial effects of dietary CS.


Assuntos
Sulfatos de Condroitina , Microbiota , Humanos , Fermentação , Sulfatos , Glicosaminoglicanos , Bacteroides , Eubacterium , Óxidos de Enxofre
14.
Bioresour Technol ; 343: 126071, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34606923

RESUMO

One of the potential bioresources for bioethanol production is Napier grass, considering its high cellulose and hemicellulose content. However, the cost of pretreatment hinders the bioethanol produced from being economical. This study examines the effect of hydrothermal process with dilute acid on extruded Napier grass, followed by enzymatic saccharification prior to simultaneous saccharification and co-fermentation (SScF). Extrusion facilitated lignin removal by 30.2 % prior to dilute acid steam explosion. Optimum pretreatment condition was obtained by using 3% sulfuric acid, and 30-min retention time of steam explosion at 190 °C. Ethanol yield of 0.26 g ethanol/g biomass (60.5% fermentation efficiency) was attained by short-term liquefaction and fermentation using a cellulose-hydrolyzing and xylose-assimilating Saccharomyces cerevisiae NBRC1440/B-EC3-X ΔPHO13, despite the presence of inhibitors. This proposed method not only reduced over-degradation of cellulose and hemicellulose, but also eliminated detoxification process and reduced cellulase loading.


Assuntos
Saccharomyces cerevisiae , Xilose , Celulose/metabolismo , Etanol , Fermentação , Hidrólise , Lignina/metabolismo , Saccharomyces cerevisiae/metabolismo , Ácidos Sulfúricos
15.
ACS Synth Biol ; 11(6): 2098-2107, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35575690

RESUMO

Bioactive plant-based secondary metabolites such as stilbenoids, flavonoids, and benzylisoquinoline alkaloids (BIAs) are produced from l-tyrosine (l-Tyr) and have a wide variety of commercial applications. Therefore, building a microorganism with high l-Tyr productivity (l-Tyr chassis) is of immense value for large-scale production of various aromatic compounds. The aim of this study was to develop an l-Tyr chassis in the nonconventional yeast Pichia pastoris (Komagataella phaffii) to produce various aromatic secondary metabolites (resveratrol, naringenin, norcoclaurine, and reticuline). Overexpression of feedback-inhibition insensitive variants of 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (ARO4K229L) and chorismate mutase (ARO7G141S) enhanced l-Tyr titer from glycerol in P. pastoris. These engineered P. pastoris strains increased the titer of resveratrol, naringenin, and norcoclaurine by 258, 244, and 3400%, respectively, after expressing the corresponding heterologous pathways. The titer of resveratrol and naringenin further increased by 305 and 249%, resulting in yields of 1825 and 1067 mg/L, respectively, in fed-batch fermentation, which is the highest titer from glycerol reported to date. Furthermore, the resveratrol-producing strain accumulated intermediates in the shikimate pathway. l-Tyr-derived aromatic compounds were produced using crude glycerol byproducts from biodiesel fuel (BDF) production. Constructing an l-Tyr chassis is a promising strategy to increase the titer of various aromatic secondary metabolites and P. pastoris is an attractive host for high-yield production of l-Tyr-derived aromatic compounds from glycerol.


Assuntos
Glicerol , Engenharia Metabólica , Glicerol/metabolismo , Engenharia Metabólica/métodos , Pichia/genética , Pichia/metabolismo , Resveratrol/metabolismo , Saccharomycetales , Tirosina/metabolismo
16.
Appl Microbiol Biotechnol ; 89(6): 1741-50, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21165615

RESUMO

We isolated and characterized a D-lactic acid-producing lactic acid bacterium (D-LAB), identified as Lactobacillus delbrueckii subsp. lactis QU 41. When compared to Lactobacillus coryniformis subsp. torquens JCM 1166 (T) and L. delbrueckii subsp. lactis JCM 1248 (T), which are also known as D-LAB, the QU 41 strain exhibited a high thermotolerance and produced D-lactic acid at temperatures of 50 °C and higher. In order to optimize the culture conditions of the QU 41 strain, we examined the effects of pH control, temperature, neutralizing reagent, and initial glucose concentration on D-lactic acid production in batch cultures. It was found that the optimal production of 20.1 g/l D-lactic acid was acquired with high optical purity (>99.9% of D-lactic acid) in a pH 6.0-controlled batch culture, by adding ammonium hydroxide as a neutralizing reagent, at 43 °C in MRS medium containing 20 g/l glucose. As a result of product inhibition and low cell density, continuous cultures were investigated using a microfiltration membrane module to recycle flow-through cells in order to improve D-lactic acid productivity. At a dilution rate of 0.87 h(-1), the high cell density continuous culture exhibited the highest D-lactic acid productivity of 18.0 g/l/h with a high yield (ca. 1.0 g/g consumed glucose) and a low residual glucose (<0.1 g/l) in comparison with systems published to date.


Assuntos
Temperatura Alta , Ácido Láctico/metabolismo , Lactobacillus delbrueckii/metabolismo , Lactobacillus delbrueckii/efeitos da radiação , Meios de Cultura/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Lactobacillus delbrueckii/crescimento & desenvolvimento , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
17.
Metab Eng Commun ; 13: e00188, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34888140

RESUMO

Resveratrol is a plant-derived aromatic compound with a wide range of beneficial properties including antioxidant and anti-aging effects. The resveratrol currently available on the market is predominantly extracted from certain plants such as grape and the Japanese knotweed Polygonum cuspidatum. Due to the unstable harvest of these plants and the low resveratrol purity obtained, it is necessary to develop a stable production process of high-purity resveratrol from inexpensive feedstocks. Here, we attempted to produce resveratrol from a wide range of sugars as carbon sources by a using the genetically-engineered yeast Scheffersomyces stipitis (formerly known as Pichia stipitis), which possesses a broad sugar utilization capacity. First, we constructed the resveratrol producing strain by introducing genes coding the essential enzymes for resveratrol biosynthesis [tyrosine ammonia-lyase 1 derived from Herpetosiphon aurantiacus (HaTAL1), 4-coumarate: CoA ligase 2 derived from Arabidopsis thaliana (At4CL2), and stilbene synthase 1 derived from Vitis vinifera (VvVST1)]. Subsequently, a feedback-insensitive allele of chorismate mutase was overexpressed in the constructed strain to improve resveratrol production. The constructed strain successfully produced resveratrol from a broad range of biomass-derived sugars [glucose, fructose, xylose, N-acetyl glucosamine (GlcNAc), galactose, cellobiose, maltose, and sucrose] in shake flask cultivation. Significant resveratrol titers were detected in cellobiose and sucrose fermentation (529.8 and 668.6 mg/L after 120 h fermentation, respectively), twice above the amount obtained with glucose (237.6 mg/L). Metabolomic analysis revealed an altered profile of the metabolites involved in the glycolysis and shikimate pathways, and also of cofactors and metabolites of energy metabolisms, depending on the substrate used. The levels of resveratrol precursors such as L-tyrosine increased in cellobiose and sucrose-grown cells. The results indicate that S. stipitis is an attractive microbial platform for resveratrol production from broad types of biomass-derived sugars and the selection of suitable substrates is crucial for improving resveratrol productivity of this yeast.

18.
Commun Biol ; 4(1): 450, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837247

RESUMO

Light/dark cycling is an inherent condition of outdoor microalgae cultivation, but is often unfavorable for lipid accumulation. This study aims to identify promising targets for metabolic engineering of improved lipid accumulation under outdoor conditions. Consequently, the lipid-rich mutant Chlamydomonas sp. KOR1 was developed through light/dark-conditioned screening. During dark periods with depressed CO2 fixation, KOR1 shows rapid carbohydrate degradation together with increased lipid and carotenoid contents. KOR1 was subsequently characterized with extensive mutation of the ISA1 gene encoding a starch debranching enzyme (DBE). Dynamic time-course profiling and metabolomics reveal dramatic changes in KOR1 metabolism throughout light/dark cycles. During light periods, increased flux from CO2 through glycolytic intermediates is directly observed to accompany enhanced formation of small starch-like particles, which are then efficiently repartitioned in the next dark cycle. This study demonstrates that disruption of DBE can improve biofuel production under light/dark conditions, through accelerated carbohydrate repartitioning into lipid and carotenoid.


Assuntos
Proteínas de Algas/metabolismo , Metabolismo dos Carboidratos , Carotenoides/metabolismo , Chlamydomonas/metabolismo , Metabolismo dos Lipídeos , Amido/metabolismo , Chlamydomonas/enzimologia , Microalgas/enzimologia , Microalgas/metabolismo
19.
Biotechnol Biofuels ; 13: 138, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32782474

RESUMO

BACKGROUND: Consolidated bioprocessing, which combines saccharolytic and fermentative abilities in a single microorganism, is receiving increased attention to decrease environmental and economic costs in lignocellulosic biorefineries. Nevertheless, the economic viability of lignocellulosic ethanol is also dependent of an efficient utilization of the hemicellulosic fraction, which contains xylose as a major component in concentrations that can reach up to 40% of the total biomass in hardwoods and agricultural residues. This major bottleneck is mainly due to the necessity of chemical/enzymatic treatments to hydrolyze hemicellulose into fermentable sugars and to the fact that xylose is not readily consumed by Saccharomyces cerevisiae-the most used organism for large-scale ethanol production. In this work, industrial S. cerevisiae strains, presenting robust traits such as thermotolerance and improved resistance to inhibitors, were evaluated as hosts for the cell-surface display of hemicellulolytic enzymes and optimized xylose assimilation, aiming at the development of whole-cell biocatalysts for consolidated bioprocessing of corn cob-derived hemicellulose. RESULTS: These modifications allowed the direct production of ethanol from non-detoxified hemicellulosic liquor obtained by hydrothermal pretreatment of corn cob, reaching an ethanol titer of 11.1 g/L corresponding to a yield of 0.328 g/g of potential xylose and glucose, without the need for external hydrolytic catalysts. Also, consolidated bioprocessing of pretreated corn cob was found to be more efficient for hemicellulosic ethanol production than simultaneous saccharification and fermentation with addition of commercial hemicellulases. CONCLUSIONS: These results show the potential of industrial S. cerevisiae strains for the design of whole-cell biocatalysts and paves the way for the development of more efficient consolidated bioprocesses for lignocellulosic biomass valorization, further decreasing environmental and economic costs.

20.
Biotechnol J ; 14(9): e1800704, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31283105

RESUMO

Xylitol is a highly valuable commodity chemical used extensively in the food and pharmaceutical industries. The production of xylitol from d-xylose involves a costly and polluting catalytic hydrogenation process. Biotechnological production from lignocellulosic biomass by micro-organisms like yeasts is a promising option. In this study, xylitol is produced from lignocellulosic biomass by a recombinant strain of Saccharomyces cerevisiae (S. cerevisiae) (YPH499-SsXR-AaBGL) expressing cytosolic xylose reductase (Scheffersomyces stipitis xylose reductase [SsXR]), along with a ß-d-glucosidase (Aspergillus aculeatus ß-glucosidase 1 [AaBGL]) displayed on the cell surface. The simultaneous cofermentation of cellobiose/xylose by this strain leads to an ≈2.5-fold increase in Yxylitol/xylose (=0.54) compared to the use of a glucose/xylose mixture as a substrate. Further improvement in the xylose uptake by the cell is achieved by a broad evaluation of several homologous and heterologous transporters. Homologous maltose transporter (ScMAL11) shows the best performance in xylose transport and is used to generate the strain YPH499-XR-ScMAL11-BGL with a significantly improved xylitol production capacity from cellobiose/xylose coutilization. This report constitutes a promising proof of concept to further scale up the biorefinery industrial production of xylitol from lignocellulose by combining cell surface and metabolic engineering in S. cerevisiae.


Assuntos
Celobiose/metabolismo , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , beta-Glucosidase/metabolismo , Biomassa , Lignina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA