Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Hum Genet ; 110(5): 809-825, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37075751

RESUMO

Heterozygous pathogenic variants in POLR1A, which encodes the largest subunit of RNA Polymerase I, were previously identified as the cause of acrofacial dysostosis, Cincinnati-type. The predominant phenotypes observed in the cohort of 3 individuals were craniofacial anomalies reminiscent of Treacher Collins syndrome. We subsequently identified 17 additional individuals with 12 unique heterozygous variants in POLR1A and observed numerous additional phenotypes including neurodevelopmental abnormalities and structural cardiac defects, in combination with highly prevalent craniofacial anomalies and variable limb defects. To understand the pathogenesis of this pleiotropy, we modeled an allelic series of POLR1A variants in vitro and in vivo. In vitro assessments demonstrate variable effects of individual pathogenic variants on ribosomal RNA synthesis and nucleolar morphology, which supports the possibility of variant-specific phenotypic effects in affected individuals. To further explore variant-specific effects in vivo, we used CRISPR-Cas9 gene editing to recapitulate two human variants in mice. Additionally, spatiotemporal requirements for Polr1a in developmental lineages contributing to congenital anomalies in affected individuals were examined via conditional mutagenesis in neural crest cells (face and heart), the second heart field (cardiac outflow tract and right ventricle), and forebrain precursors in mice. Consistent with its ubiquitous role in the essential function of ribosome biogenesis, we observed that loss of Polr1a in any of these lineages causes cell-autonomous apoptosis resulting in embryonic malformations. Altogether, our work greatly expands the phenotype of human POLR1A-related disorders and demonstrates variant-specific effects that provide insights into the underlying pathogenesis of ribosomopathies.


Assuntos
Anormalidades Craniofaciais , Disostose Mandibulofacial , Humanos , Camundongos , Animais , Disostose Mandibulofacial/genética , Apoptose , Mutagênese , Ribossomos/genética , Fenótipo , Crista Neural/patologia , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/patologia
2.
Am J Hum Genet ; 109(11): 2068-2079, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36283405

RESUMO

Non-centrosomal microtubules are essential cytoskeletal filaments that are important for neurite formation, axonal transport, and neuronal migration. They require stabilization by microtubule minus-end-targeting proteins including the CAMSAP family of molecules. Using exome sequencing on samples from five unrelated families, we show that bi-allelic CAMSAP1 loss-of-function variants cause a clinically recognizable, syndromic neuronal migration disorder. The cardinal clinical features of the syndrome include a characteristic craniofacial appearance, primary microcephaly, severe neurodevelopmental delay, cortical visual impairment, and seizures. The neuroradiological phenotype comprises a highly recognizable combination of classic lissencephaly with a posterior more severe than anterior gradient similar to PAFAH1B1(LIS1)-related lissencephaly and severe hypoplasia or absence of the corpus callosum; dysplasia of the basal ganglia, hippocampus, and midbrain; and cerebellar hypodysplasia, similar to the tubulinopathies, a group of monogenic tubulin-associated disorders of cortical dysgenesis. Neural cell rosette lineages derived from affected individuals displayed findings consistent with these phenotypes, including abnormal morphology, decreased cell proliferation, and neuronal differentiation. Camsap1-null mice displayed increased perinatal mortality, and RNAScope studies identified high expression levels in the brain throughout neurogenesis and in facial structures, consistent with the mouse and human neurodevelopmental and craniofacial phenotypes. Together our findings confirm a fundamental role of CAMSAP1 in neuronal migration and brain development and define bi-allelic variants as a cause of a clinically distinct neurodevelopmental disorder in humans and mice.


Assuntos
Lissencefalias Clássicas e Heterotopias Subcorticais em Banda , Lisencefalia , Malformações do Sistema Nervoso , Humanos , Animais , Camundongos , Lisencefalia/genética , Alelos , Tubulina (Proteína)/genética , Fenótipo , Malformações do Sistema Nervoso/genética , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/genética , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética
3.
Mol Ecol ; 31(15): 4031-4049, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33786930

RESUMO

Divergent adaptation to new ecological opportunities can be an important factor initiating speciation. However, as niches are filled during adaptive radiations, trait divergence driving reproductive isolation between sister taxa may also result in trait convergence with more distantly related taxa, increasing the potential for reticulated gene flow across the radiation. Here, we demonstrate such a scenario in a recent adaptive radiation of Rhagoletis fruit flies, specialized on different host plants. Throughout this radiation, shifts to novel hosts are associated with changes in diapause life history timing, which act as "magic traits" generating allochronic reproductive isolation and facilitating speciation-with-gene-flow. Evidence from laboratory rearing experiments measuring adult emergence timing and genome-wide DNA-sequencing surveys supported allochronic speciation between summer-fruiting Vaccinium spp.-infesting Rhagoletis mendax and its hypothesized and undescribed sister taxon infesting autumn-fruiting sparkleberries. The sparkleberry fly and R. mendax were shown to be genetically discrete sister taxa, exhibiting no detectable gene flow and allochronically isolated by a 2-month average difference in emergence time corresponding to host availability. At sympatric sites across the southern USA, the later fruiting phenology of sparkleberries overlaps with that of flowering dogwood, the host of another more distantly related and undescribed Rhagoletis taxon. Laboratory emergence data confirmed broadly overlapping life history timing and genomic evidence supported on-going gene flow between sparkleberry and flowering dogwood flies. Thus, divergent phenological adaptation can drive the initiation of reproductive isolation, while also enhancing genetic exchange across broader adaptive radiations, potentially serving as a source of novel genotypic variation and accentuating further diversification.


Assuntos
Diapausa , Tephritidae , Animais , Fluxo Gênico , Especiação Genética , Hibridização Genética , Isolamento Reprodutivo , Tephritidae/genética
4.
Am J Med Genet A ; 188(1): 104-115, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34523780

RESUMO

Primary ciliopathies are heterogenous disorders resulting from perturbations in primary cilia form and/or function. Primary cilia are cellular organelles which mediate key signaling pathways during development, such as the sonic hedgehog (SHH) pathway which is required for neuroepithelium and central nervous system development. Joubert syndrome is a primary ciliopathy characterized by cerebellar/brain stem malformation, hypotonia, and developmental delays. At least 35 genes are associated with Joubert syndrome, including the gene KIAA0753, which is part of a complex required for primary ciliogenesis. The phenotypic spectrum associated with biallelic pathogenic variants in KIAA0753 is broad and not well-characterized. We describe four individuals with biallelic pathogenic KIAA0753 variants, including five novel variants. We report in vitro results assessing the function of each variant indicating that mutant proteins are not fully competent to promote primary ciliogenesis. Ablation of KIAA0753 in vitro blocks primary ciliogenesis and SHH pathway activity. Correspondingly, KIAA0753 patient fibroblasts have a deficit in primary ciliation and improper SHH and WNT signaling, with a particularly blunted response to SHH pathway stimulation. Our work expands the phenotypic spectrum of KIAA0753 ciliopathies and demonstrates the utility of patient-focused functional assays for proving causality of genetic variants.


Assuntos
Anormalidades Múltiplas , Ciliopatias , Anormalidades do Olho , Doenças Renais Císticas , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Cerebelo/anormalidades , Cílios/genética , Cílios/patologia , Ciliopatias/genética , Ciliopatias/patologia , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Proteínas Associadas aos Microtúbulos , Retina/anormalidades
5.
bioRxiv ; 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38168190

RESUMO

Genetic variants in multiple sphingolipid biosynthesis genes cause human brain disorders. A recent study collected patients from twelve unrelated families with variants in the gene SMPD4 , a neutral sphingomyelinase which metabolizes sphingomyelin into ceramide at an early stage of the biosynthesis pathway. These patients have severe developmental brain malformations including microcephaly and cerebellar hypoplasia. However, the mechanism of SMPD4 was not known and we pursued a new mouse model. We hypothesized that the role of SMPD4 in producing ceramide is important for making primary cilia, a crucial organelle mediating cellular signaling. We found that the mouse model has cerebellar hypoplasia due to failure of Purkinje cell development. Human induced pluripotent stem cells exhibit neural progenitor cell death and have shortened primary cilia which is rescued by adding exogenous ceramide. SMPD4 production of ceramide is crucial for human brain development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA