Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Proteome Res ; 21(3): 635-642, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35102742

RESUMO

N-Acyl-l-homoserine lactones (AHLs) are a large family of signaling molecules in "quorum sensing" communication. This mechanism is present in a number of bacterial physiological phenomena, including pathogenic phenomena. In this study, we described a simple and accessible way to detect, annotate, and quantify these compounds from bacterial culture media. Analytical standards and ethyl acetate bacterial extracts containing AHLs were analyzed by an ultra-high-performance liquid chromatography system coupled to a mass spectrometer using a nontargeted FullMS data-dependent MS2 method. The results were processed in MZmine2 and then analyzed by a Feature-Based Molecular Networking (FBMN) workflow in the Global Natural Products Social Networking (GNPS) platform for the discovery and annotation of known and unknown AHLs. Our group analyzed 31 AHL standards and included the MS2 spectra in the spectral library of the GNPS platform. We also provide the 31 standard AHL spectrum list for inclusion in molecular networking analyses. FBMN analysis annotated 30 out of 31 standards correctly. Then, as an example, a set of five bacterial extracts was prepared for AHL annotation. Following the method described in this Article, 5 known and 11 unknown AHLs were properly annotated using the FBMN-based molecular network approach. This study offers the possibility for the automatic annotation of known AHLs and the search for nonreferenced AHLs in bacterial extracts in a somewhat straightforward approach even without acquiring analytical standards. The method also provides relative quantification information.


Assuntos
Acil-Butirolactonas , Espectrometria de Massas em Tandem , 4-Butirolactona/análise , Acil-Butirolactonas/química , Cromatografia Líquida/métodos , Homosserina , Percepção de Quorum , Espectrometria de Massas em Tandem/métodos
2.
J Appl Microbiol ; 132(4): 2870-2882, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34919313

RESUMO

AIMS: The current study aimed to evaluate the occurrence of actinomycetes in the Coast of Bejaia City using selective isolation, as well as their bioactivity and phylogenitic diversity. METHODS AND RESULTS: Different selective media and methods were used, leading to the isolation of 103 actinomycete strains. The number of strains was influenced by isolation procedures and their interactions based on a three-way ANOVA and a post hoc Tukey test, which revealed that using M2 medium, dilution of samples followed by moderate heat treatment, and sampling at 10-20 m yielded the highest numbers of actinomycetes. The isolates were screened for their antimicrobial activity against human pathogenic microorganisms using agar and well diffusion methods. Of all the isolates, ten displayed activity against at least one Gram-positive bacterium, of which P21 showed the highest activity against Staphylococcus aureus, Methicillin-resistant S. aureus and Bacillus subtilis, with a diameter of 32, 28 and 25 mm respectively. Subsequently, active isolates were assigned to Streptomyces spp. and Nocardiopsis spp. based on 16S rRNA gene sequencing, including a putative new Streptomyces species (S3). The phenotypic characteristics of the P21 strain were determined, and interesting enzymatic capacities were shown. CONCLUSION: The recovery of actinomycetes along the Coast of Bejaia City was influenced by the isolation procedure. Ten strains displayed interesting antibacterial activity against Gram-positive bacteria, of which the P21 strain was selected as the most active strain. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides a new insight into the occurrence of actinobacteria in the Coast of Bejaia. It suggests also that polluted environments such as Bejaia Bay could provide access to interesting actinomycetes as sources of antibiotic leads.


Assuntos
Actinobacteria , Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Streptomyces , Actinomyces/genética , Argélia , Antibacterianos/farmacologia , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Filogenia , RNA Ribossômico 16S/genética , Streptomyces/genética
3.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190356, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32862822

RESUMO

Global warming affects primary producers in the Arctic, with potential consequences for the bacterial community composition through the consumption of microalgae-derived dissolved organic matter (DOM). To determine the degree of specificity in the use of an exudate by bacterial taxa, we used simple microalgae-bacteria model systems. We isolated 92 bacterial strains from the sea ice bottom and the water column in spring-summer in the Baffin Bay (Arctic Ocean). The isolates were grouped into 42 species belonging to Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes. Forty strains were tested for their capacity to grow on the exudate from two Arctic diatoms. Most of the strains tested (78%) were able to grow on the exudate from the pelagic diatom Chaetoceros neogracilis, and 33% were able to use the exudate from the sea ice diatom Fragilariopsis cylindrus. 17.5% of the strains were not able to grow with any exudate, while 27.5% of the strains were able to use both types of exudates. All strains belonging to Flavobacteriia (n = 10) were able to use the DOM provided by C. neogracilis, and this exudate sustained a growth capacity of up to 100 times higher than diluted Marine Broth medium, of two Pseudomonas sp. strains and one Sulfitobacter strain. The variable bioavailability of exudates to bacterial strains highlights the potential role of microalgae in shaping the bacterial community composition. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Diatomáceas/metabolismo , Água do Mar/química , Água do Mar/microbiologia , Regiões Árticas , Bactérias/classificação , Biodegradação Ambiental , Biodiversidade , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/isolamento & purificação , Ecossistema , Aquecimento Global , Camada de Gelo/química , Camada de Gelo/microbiologia , Microalgas/crescimento & desenvolvimento , Microalgas/isolamento & purificação , Microalgas/metabolismo , Modelos Biológicos , Oceanos e Mares , Compostos Orgânicos/metabolismo , Filogenia , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/isolamento & purificação , Fitoplâncton/metabolismo
4.
Int J Syst Evol Microbiol ; 67(9): 3246-3250, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28829014

RESUMO

A Gram-stain-negative, aerobic, yellow-pigmented, straight rod-shaped bacterium, strain MOLA117T, was isolated from a coastal water sample from the north-western Mediterranean Sea, near Banyuls-sur-Mer, France. On the basis of phylogenetic analysis of the 16S rRNA gene sequence, strain MOLA117T was placed within the family Flavobacteriaceae, but showed less than 93 % 16S rRNA gene sequence similarity to other recognized species within the family. The most closely related genera included Arenibacter, Cellulophaga, Maribacter and Zobellia. The only isoprenoid quinone was menaquinone MK-6 and the predominant fatty acid was iso-C17 : 0 3-OH, representing over 33 % of the total fatty acids. The DNA G+C content was 36.9 mol%. Strain MOLA117T required NaCl for growth, and did not exhibit gliding motility or produce flexirubin. Based on the phenotypic and phylogenetic data, strain MOLA117T should be considered to represent a novel species of a new genus, for which the name Saonia flava gen. nov., sp. nov. is proposed. The type strain of Saonia flava is MOLA117T (=CIP 110873T=DSM 29762T).


Assuntos
Flavobacteriaceae/classificação , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/genética , Flavobacteriaceae/isolamento & purificação , França , Mar Mediterrâneo , Mar do Norte , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
5.
Sensors (Basel) ; 17(4)2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28425948

RESUMO

Since the discovery of quorum sensing (QS) in the 1970s, many studies have demonstrated that Vibrio species coordinate activities such as biofilm formation, virulence, pathogenesis, and bioluminescence, through a large group of molecules called N-acyl homoserine lactones (AHLs). However, despite the extensive knowledge on the involved molecules and the biological processes controlled by QS in a few selected Vibrio strains, less is known about the overall diversity of AHLs produced by a broader range of environmental strains. To investigate the prevalence of QS capability of Vibrio environmental strains we analyzed 87 Vibrio spp. strains from the Banyuls Bacterial Culture Collection (WDCM911) for their ability to produce AHLs. This screening was based on three biosensors, which cover a large spectrum of AHLs, and revealed that only 9% of the screened isolates produced AHLs in the defined experimental conditions. Among these AHL-producing strains, Vibrio tasmaniensis LGP32 is a well-known pathogen of bivalves. We further analyzed the diversity of AHLs produced by this strain using a sensitive bioguided UHPLC-HRMS/MS approach (Ultra-High-Performance Liquid Chromatography followed by High-Resolution tandem Mass Spectrometry) and we identified C10-HSL, OH-C12-HSL, oxo-C12-HSL and C14:1-HSL as QS molecules. This is the first report that documents the production of AHL by Vibrio tasmaniensis LGP32.


Assuntos
Vibrio , 4-Butirolactona , Acil-Butirolactonas , Técnicas Biossensoriais , Cromatografia Líquida de Alta Pressão , Homosserina , Lactonas , Percepção de Quorum
6.
Microbiol Resour Announc ; 13(6): e0019924, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38682917

RESUMO

Streptomycin thallous acetate actidione medium is typically used to isolate Brochothrix thermosphacta bacteria from food. Using this medium, three bacterial strains were isolated from the environment. Genomic sequences demonstrated that these bacteria are of the genera Lysinibacillus and Paenibacillus and are of biotechnological interest.

7.
iScience ; 27(3): 109176, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38433891

RESUMO

Brown macroalgae are colonized by diverse microorganisms influencing the physiology of their host. However, cell-cell interactions within the surface microbiome (epimicrobiome) are largely unexplored, despite the significance of specific chemical mediators in maintaining host-microbiome homeostasis. In this study, by combining liquid chromatography coupled to mass spectrometry (LC-MS) analysis and bioassays, we demonstrated that the widely diverse fungal epimicrobiota of the brown alga Saccharina latissima can affect quorum sensing (QS), a type of cell-cell interaction, as well as bacterial biofilm formation. We also showed the ability of the bacterial epimicrobiota to form and inhibit biofilm growth, as well as to activate or inhibit QS pathways. Overall, we demonstrate that QS and anti-QS compounds produced by the epimicrobiota are key metabolites in these brown algal epimicrobiota communities and highlight the importance of exploring this epimicrobiome for the discovery of new bioactive compounds, including potentially anti-QS molecules with antifouling properties.

8.
Int J Syst Evol Microbiol ; 63(Pt 1): 303-308, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22427449

RESUMO

A Gram-negative bacterium, designated TF5-37.2-LB10(T), was isolated from subsurface water of the Toarcian geological layer of Tournemire, France. Cells were non-motile straight rods that formed cream to light pink colonies on 10-fold diluted LB agar. Strain TF5-37.2-LB10(T) contained menaquinone 7 and its major fatty acids were iso-C(15 : 0), summed feature 3 (iso-C(15 : 0) 2-OH and/or C(16 : 1)ω7c), iso-C(17 : 0) 3-OH and iso-C(17 : 1)ω9c. The G+C content of the genomic DNA was 46 mol%. Phylogenetic analysis of the 16S rRNA gene sequence placed strain TF5-37.2-LB10(T) within the genus Pedobacter, family Sphingobacteriaceae. Pedobacter composti TR6-06(T) and Pedobacter oryzae DSM 19973(T) were the closest phylogenetic relatives (93.5 and 93.3 % 16S rRNA gene sequence similarity, respectively). On the basis of 16S rRNA gene sequence comparison and physiological and biochemical characteristics, strain TF5-37.2-LB10(T) represents a novel species of the genus Pedobacter, for which the name Pedobacter tournemirensis sp. nov. is proposed. The type strain is TF5-37.2-LB10(T) (= DSM 23085(T) = CIP 110085(T) = MOLA 820(T)).


Assuntos
Pedobacter/classificação , Filogenia , Microbiologia da Água , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , França , Dados de Sequência Molecular , Pedobacter/genética , Pedobacter/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/análise
9.
Int J Syst Evol Microbiol ; 63(Pt 7): 2700-2705, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23291888

RESUMO

A Gram-negative, aerobic, cream-pigmented, non-motile, non-spore-forming straight rod, strain MOLA115(T), was isolated from a coastal water sample from the Mediterranean Sea. On the basis of phylogenetic analysis of the 16S rRNA gene sequences, strain MOLA115(T) was shown to belong to the Gammaproteobacteria, adjacent to members of the genera Marinicella, Arenicella and Kangiella, sharing less than 89 % 16S rRNA gene sequence similarity with strains of all recognized species within the Gammaproteobacteria. The only isoprenoid quinone was ubiquinone-8. Polar lipids in strain MOLA115(T) included phosphatidylethanolamine, an aminolipid, phosphatidylglycerol and an aminophospholipid. Fatty acid analysis revealed iso-C15 : 0 and iso-C17 : 1ω9c to be the dominant components. The DNA G+C content was 44.5 mol%. Based upon the phenotypic and phylogenetic data, we propose that strain MOLA115(T) should be considered to represent a novel species in a new genus, for which the name Pleionea mediterranea gen. nov., sp. nov. is proposed. The type strain of Pleionea mediterranea is MOLA115(T) ( = CIP 110343(T) = DSM 25350(T)).


Assuntos
Gammaproteobacteria/classificação , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Mar Mediterrâneo , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/análise
10.
Front Plant Sci ; 13: 814386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463414

RESUMO

Phytoplankton-bacteria interactions rule over carbon fixation in the sunlit ocean, yet only a handful of phytoplanktonic-bacteria interactions have been experimentally characterized. In this study, we investigated the effect of three bacterial strains isolated from a long-term microcosm experiment with one Ostreococcus strain (Chlorophyta, Mamiellophyceae). We provided evidence that two Roseovarius strains (Alphaproteobacteria) had a beneficial effect on the long-term survival of the microalgae whereas one Winogradskyella strain (Flavobacteriia) led to the collapse of the microalga culture. Co-cultivation of the beneficial and the antagonistic strains also led to the loss of the microalga cells. Metagenomic analysis of the microcosm is consistent with vitamin B12 synthesis by the Roseovarius strains and unveiled two additional species affiliated to Balneola (Balneolia) and Muricauda (Flavobacteriia), which represent less than 4% of the reads, whereas Roseovarius and Winogradskyella recruit 57 and 39% of the reads, respectively. These results suggest that the low-frequency bacterial species may antagonize the algicidal effect of Winogradskyella in the microbiome of Ostreococcus tauri and thus stabilize the microalga persistence in the microcosm. Altogether, these results open novel perspectives into long-term stability of phytoplankton cultures.

11.
Int J Syst Evol Microbiol ; 61(Pt 7): 1677-1681, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20729310

RESUMO

A novel aerobic, gram-negative bacterial strain, designated 17X/A02/237(T), was isolated from waters of the coastal north-western Mediterranean Sea. Cells were motile straight rods and formed dark-grey colonies on marine agar medium. Strain 17X/A02/237(T) contained ubiquinone Q-8 and its major fatty acids were C(16 : 1)ω7c and/or iso-C(15 : 0) 2-OH, C(18 : 1)ω7c, C(16 : 0), C(18 : 0) and C(10 : 0) 3-OH. The G+C content of the genomic DNA was 47.5 mol%. Phylogenetic analysis of the 16S rRNA gene sequence placed the strain in the class Gammaproteobacteria. Based on 16S rRNA gene sequence data, as well as physiological and biochemical characteristics, this isolate represents a novel species of a new genus, for which the name of Eionea nigra gen. nov., sp. nov. is proposed. The type strain is 17X/A02/237(T) ( = DSM 19752(T) = CIP 109759(T) = MOLA 288(T)).


Assuntos
Gammaproteobacteria/classificação , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Mar Mediterrâneo , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
12.
FEMS Microbiol Lett ; 368(4)2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33605980

RESUMO

Genomic islands (Aeromonas salmonicida genomic islands, AsaGEIs) are found worldwide in many isolates of Aeromonas salmonicida subsp. salmonicida, a fish pathogen. To date, five variants of AsaGEI (1a, 1b, 2a, 2b and 2c) have been described. Here, we investigate a sixth AsaGEI, which was identified in France between 2016 and 2019 in 20 A. salmonicida subsp. salmonicida isolates recovered from sick salmon all at the same location. This new AsaGEI shares the same insertion site in the chromosome as the other AsaGEI2s as they all have a homologous integrase gene. This new AsaGEI was thus named AsaGEI2d, and has five unique genes compared to the other AsaGEIs. The isolates carrying AsaGEI2d also bear the plasmid pAsa7, which was initially found in an isolate from Switzerland. This plasmid provides resistance to chloramphenicol thanks to a cat gene. This study reveals more about the diversity of the AsaGEIs.


Assuntos
Aeromonas/genética , Ilhas Genômicas , Plasmídeos , Aeromonas/classificação , Aeromonas/efeitos dos fármacos , Aeromonas/isolamento & purificação , Animais , Antibacterianos/farmacologia , Resistência ao Cloranfenicol/genética , Doenças dos Peixes/microbiologia , França , Genoma Bacteriano/genética , Ilhas Genômicas/genética , Integrases/genética , Testes de Sensibilidade Microbiana , Fases de Leitura Aberta , Filogenia , Plasmídeos/genética , Salmão
13.
Microorganisms ; 9(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34442856

RESUMO

Although interactions between microalgae and bacteria are observed in both natural environment and the laboratory, the modalities of coexistence of bacteria inside microalgae phycospheres in laboratory cultures are mostly unknown. Here, we focused on well-controlled cultures of the model green picoalga Ostreococcus tauri and the most abundant member of its phycosphere, Marinobacter algicola. The prevalence of M. algicola in O. tauri cultures raises questions about how this bacterium maintains itself under laboratory conditions in the microalga culture. The results showed that M. algicola did not promote O. tauri growth in the absence of vitamin B12 while M. algicola depended on O. tauri to grow in synthetic medium, most likely to obtain organic carbon sources provided by the microalgae. M. algicola grew on a range of lipids, including triacylglycerols that are known to be produced by O. tauri in culture during abiotic stress. Genomic screening revealed the absence of genes of two particular modes of quorum-sensing in Marinobacter genomes which refutes the idea that these bacterial communication systems operate in this genus. To date, the 'opportunistic' behaviour of M. algicola in the laboratory is limited to several phytoplanktonic species including Chlorophyta such as O. tauri. This would indicate a preferential occurrence of M. algicola in association with these specific microalgae under optimum laboratory conditions.

14.
Int J Syst Evol Microbiol ; 60(Pt 12): 2972-2978, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20118290

RESUMO

A novel aerobic, heterotrophic bacterium, designated BiosLi39(T), was isolated from the South East Pacific Ocean. Cells were Gram-negative gliding rods forming yellow colonies on marine agar. The isolate was oxidase-, catalase- and alkaline phosphatase-positive and ß-galactosidase-negative. Strain BiosLi39(T) grew at 20-37°C (optimum 30°C), at pH7.0-9.0 (optimum pH8.0) and with 20-60 g NaCl l(-1) (optimum 30-50 g NaCl l(-1)). The fatty acids (>1 %) comprised iso-C(14 : 0), iso-C(15 : 1) G, iso-C(15 : 0), anteiso-C(15 : 0), C(15 : 1) G, C(15 : 0), iso-C(15 : 0) 2-OH, iso-C(16 : 1) G, iso-C(16 : 0), iso-C(16 : 0) 3-OH, iso-C(16 : 0) 2-OH, iso-C(17 : 0) 3-OH, C(17 : 0) 2-OH and three unidentified components with equivalent chain lengths of 17.87, 18.10 and 18.71. A significant proportion of the hydroxylated fatty acids are amide-linked. The lipid pattern indicated the presence of phosphatidylethanolamine, two unidentified aminolipids and three unidentified polar lipids. The strain contained menaquinone 7 as the sole respiratory lipoquinone and did not produce flexirubin-type pigments. The G+C content of the genomic DNA was 37.2 mol%. Comparative 16S rRNA gene sequence analysis indicated that strain BiosLi39(T) was distantly related to all of the representatives of the phylum Bacteroidetes. Its closest relative was Marinoscillum furvescens IFO 15994(T), with which it shared 92.5 % 16S rRNA gene sequence similarity. On the basis of genotypic, phenotypic and chemotaxonomic characteristics, we propose a novel genus and species, Ekhidna gen. nov., sp. nov., with type strain BiosLi39(T) (=DSM 19307(T) =CIP 109600(T) =OOB 398(T)).


Assuntos
Cytophagaceae/classificação , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Cytophagaceae/genética , Cytophagaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Dados de Sequência Molecular , Oceano Pacífico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
15.
Syst Appl Microbiol ; 43(1): 126018, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31733924

RESUMO

Strain MOLA 401T was isolated from marine waters in the southwest lagoon of New Caledonia and was shown previously to produce an unusual diversity of quorum sensing signaling molecules. This strain was Gram-negative, formed non-motile cocci and colonies were caramel. Optimum growth conditions were 30°C, pH 8 and 3% NaCl (w/v). Based on 16S rRNA gene sequence analysis, this strain was found to be closely related to Pseudomaribius aestuariivivens NBRC 113039T (96.9% of similarity), Maribius pontilimi DSM 104950T (96.4% of similarity) and Palleronia marisminoris LMG 22959T (96.3% of similarity), belonging to the Roseobacter group within the family Rhodobacteraceae. As its closest relatives, strain MOLA 401T is able to form a biofilm on polystyrene, supporting the view of Roseobacter group strains as prolific surface colonizers. An in-depth genomic study allowed us to affiliate strain MOLA 401T as a new species of genus Palleronia and to reaffiliate some of its closest relatives in this genus. Consequently, we describe strain MOLA 401T (DSM 106827T=CIP 111607T=BBCC 401T) for which we propose the name Palleronia rufa sp. nov. We also propose to emend the description of the genus Palleronia and to reclassify Maribius and Hwanghaeicola species as Palleronia species.


Assuntos
Acil-Butirolactonas/metabolismo , Biofilmes/crescimento & desenvolvimento , Rhodobacteraceae/classificação , Rhodobacteraceae/fisiologia , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Genes Essenciais/genética , Genoma Bacteriano/genética , Nova Caledônia , Filogenia , Percepção de Quorum , RNA Ribossômico 16S/genética , Rhodobacteraceae/química , Rhodobacteraceae/citologia , Roseobacter/química , Roseobacter/classificação , Roseobacter/citologia , Roseobacter/fisiologia , Água do Mar/microbiologia , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
16.
Front Microbiol ; 10: 1850, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555220

RESUMO

Crustose coralline red algae (CCA) are important components of marine ecosystems thriving from tropical waters and up to the poles. They fulfill important ecological services including framework building and induction of larval settlement. Like other marine organisms, CCAs have not been spared by the increase in marine disease outbreaks. The white-band syndrome has been recently observed in corallines from the Mediterranean Sea indicating that the disease threat has extended from tropical to temperate waters. Here, we examined the microbiome and the pathobiome of healthy and diseased Neogoniolithon brassica-florida coralline algae in the Mediterranean Sea by combining culture-dependent and -independent approaches. The coralline white-band syndrome was associated with a distinct pathobiome compared to healthy tissues and showed similarities with the white-band syndrome described in the Caribbean Sea. A sequence related to the genus Hoeflea, order Rhizobiales, characterized the white-band disease pathobiome described by amplicon sequencing. No representative of this genus was isolated by culture. We, however, successfully isolated an abundant member of the healthy CCA microbiome, an Alphaproteobateria of the family Rhodobacteraceae. In conclusion, we did not identify a potential causative agent of the disease, but through the complementarity of culture dependent and independent approaches we characterized the healthy microbiome of the coralline and the possible opportunistic bacteria colonizing diseased tissues.

17.
Aquat Toxicol ; 86(2): 249-55, 2008 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-18093670

RESUMO

Bioactive polyunsaturated aldehydes (PUAs) are produced by several marine phytoplankton (mainly diatoms) and have been shown to have a detrimental effect on a wide variety of organisms, including phytoplankton and invertebrates. However, their potential impact on marine bacteria has been largely neglected. We assess here the effect of three PUAs produced by marine diatoms: 2E,4E-decadienal, 2E,4E-octadienal and 2E,4E-heptadienal, on the growth of 33 marine bacterial strains, including 16 strains isolated during a bloom of the PUA-producing diatom Skeletonema marinoi in the Northern Adriatic Sea. A concentration-dependent growth reduction was observed for 19 bacterial strains at concentrations ranging from 3 to 145 micromolL(-1). Surprisingly, Eudora adriatica strain MOLA358 (Flavobacteriaceae) and Alteromonas hispanica strain MOLA151 (Alteromonadaceae) showed growth stimulation upon exposure to PUAs at concentrations between 13 and 18 micromolL(-1). The remaining 12 strains were unaffected by even very high PUA concentrations. Strains isolated during the diatom bloom showed remarkable resistance to PUA exposures, with only two out of 16 strains showing growth inhibition at PUA concentrations below 106, 130, and 145 micromolL(-1) for 2E,4E-decadienal, 2E,4E-octadienal and 2E,4E-heptadienal, respectively. No correlation between taxonomical position and sensitivity to PUA was observed. Considering that many bacteria thrive in close vicinity of diatom cells, it is likely that these compounds may shape the structure of associated bacterial communities by representing a selection force. This is even more relevant during the final stages of blooms, when senescence and nutrient limitation increase the potential production and release of aldehydes.


Assuntos
Bactérias/efeitos dos fármacos , Toxinas Marinhas/toxicidade , Aldeídos/toxicidade , Alcadienos/toxicidade , Bactérias/crescimento & desenvolvimento , Diatomáceas/fisiologia , Fatores de Tempo , Microbiologia da Água
18.
Phytochemistry ; 145: 57-67, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29091816

RESUMO

Alphaproteobacterium strain MOLA1416, related to Mycoplana ramosa DSM 7292 and Chelativorans intermedius CC-MHSW-5 (93.6% 16S rRNA sequence identity) was isolated from the marine lichen, Lichina pygmaea and its chemical composition was characterized by a metabolomic network analysis using LC-MS/MS data. Twenty-five putative different compounds were revealed using a dereplication workflow based on MS/MS signatures available through GNPS (https://gnps.ucsd.edu/). In total, ten chemical families were highlighted including isocoumarins, macrolactones, erythrinan alkaloids, prodiginines, isoflavones, cyclohexane-diones, sterols, diketopiperazines, amino-acids and most likely glucocorticoids. Among those compounds, two known metabolites (13 and 26) were isolated and structurally identified and metabolite 26 showed a high cytotoxic activity against B16 melanoma cell lines with an IC50 0.6 ± 0.07 µg/mL.


Assuntos
Alphaproteobacteria/química , Líquens/microbiologia , Melanoma Experimental/tratamento farmacológico , Oligopeptídeos/química , Prodigiosina/análogos & derivados , Alphaproteobacteria/isolamento & purificação , Alphaproteobacteria/metabolismo , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Líquens/metabolismo , Melanoma Experimental/patologia , Camundongos , Estrutura Molecular , Oligopeptídeos/isolamento & purificação , Prodigiosina/química , Prodigiosina/isolamento & purificação , Prodigiosina/farmacologia , Relação Estrutura-Atividade
19.
Front Microbiol ; 9: 3125, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30622520

RESUMO

Epibacterium mobile BBCC367 is a marine bacterium that is common in coastal areas. It belongs to the Roseobacter clade, a widespread group in pelagic marine ecosystems. Species of the Roseobacter clade are regularly used as models to understand the evolution and physiological adaptability of generalist bacteria. E. mobile BBCC367 comprises two chromosomes and two plasmids. We used gel-free shotgun proteomics to assess its protein expression under 16 different conditions, including stress factors such as elevated temperature, nutrient limitation, high metal concentration, and UVB exposure. Comparison of the different conditions allowed us not only to retrieve almost 70% of the predicted proteins, but also to define three main protein assemblages: 584 essential core proteins, 2,144 facultative accessory proteins and 355 specific unique proteins. While the core proteome mainly exhibited proteins involved in essential functions to sustain life such as DNA, amino acids, carbohydrates, cofactors, vitamins and lipids metabolisms, the accessory and unique proteomes revealed a more specific adaptation with the expression of stress-related proteins, such as DNA repair proteins (accessory proteome), transcription regulators and a significant predominance of transporters (unique proteome). Our study provides insights into how E. mobile BBCC367 adapts to environmental changes and copes with diverse stresses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA