Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671520

RESUMO

In the last 20 years, the involvement of microRNAs in the biology of human tumors has been clearly demonstrated, and the scientific community has switched from an initial skepticism to an increasing interest toward what was called the "dark side" of DNA [...].


Assuntos
MicroRNAs/genética , Neoplasias/genética , Neoplasias/terapia , Biomarcadores Tumorais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/patologia , Tolerância a Radiação/genética
2.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375067

RESUMO

Despite its controversial roles in different cancer types, miR-205 has been mainly described as an oncosuppressive microRNA (miRNA), with some contrasting results, in breast cancer. The role of miR-205 in the occurrence or progression of breast cancer has been extensively studied since the first evidence of its aberrant expression in tumor tissues versus normal counterparts. To date, it is known that the expression of miR-205 in the different subtypes of breast cancer is decreasing from the less aggressive subtype, estrogen receptor/progesterone receptor positive breast cancer, to the more aggressive, triple negative breast cancer, influencing metastasis capability, response to therapy and patient survival. In this review, we summarize the most important discoveries that have highlighted the functional role of this miRNA in breast cancer initiation and progression, in stemness maintenance, in the tumor microenvironment, its potential role as a biomarker and its relevance in normal breast physiology-the still open questions. Finally, emerging evidence reveals the role of some lncRNAs in breast cancer progression as sponges of miR-205. Here, we also reviewed the studies in this field.


Assuntos
Neoplasias da Mama/genética , Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Microambiente Tumoral/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Proliferação de Células/genética , Progressão da Doença , Feminino , Humanos
3.
Int J Mol Sci ; 21(4)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085669

RESUMO

Circulating microRNA (ct-miRNAs) are able to identify patients with differential response to HER2-targeted therapy. However, their dynamics are largely unknown. We assessed 752 miRNAs from 52 NeoALTTO patients with plasma pairs prior and two weeks after trastuzumab. Increased levels of ct-miR-148a-3p and ct-miR-374a-5p were significantly associated with pathological complete response (pCR) (p = 0.008 and 0.048, respectively). At a threshold ≥ the upper limit of the 95%CI of the mean difference, pCR resulted 45% (95%CI 24%-68%), and 44% (95%CI 22%-69%) for ct-miR-148a-3p and ct-miR-374a-5p, respectively. Notably, ct-miR-148a-3p retained its predictive value (OR 3.42, 95%CI 1.23-9.46, p = 0.018) in bivariate analysis along with estrogen receptor status. Combined information from ct-miR-148a-3p and ct-miR140-5p, which we previously reported to identify trastuzumab-responsive patients, resulted in greater predictive capability over each other, with pCR of 54% (95%CI 25%-81%) and 0% (95%CI 0%-31%) in ct-miR-148a/ct-miR-140-5p high/present and low/absent, respectively. GO and KEGG analyses showed common enriched terms between the targets of these ct-miRNAs, including cell metabolism regulation, AMPK and MAPK signaling, and HCC progression. In conclusion, early modulated ct-miR-148-3p may inform on the functional processes underlying treatment response, integrate the information from already available predictive biomarkers, and identify patients likely to respond to single agent trastuzumab-based neoadjuvant therapy.


Assuntos
Neoplasias da Mama/sangue , Neoplasias da Mama/tratamento farmacológico , MicroRNA Circulante/sangue , Terapia Neoadjuvante , Receptor ErbB-2/metabolismo , Trastuzumab/uso terapêutico , Adulto , Idoso , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Modelos Logísticos , Pessoa de Meia-Idade , Análise Multivariada
4.
Int J Mol Sci ; 20(20)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31627322

RESUMO

Oxidative stress is a pathological condition determined by a disturbance in reactive oxygen species (ROS) homeostasis. Depending on the entity of the perturbation, normal cells can either restore equilibrium or activate pathways of cell death. On the contrary, cancer cells exploit this phenomenon to sustain a proliferative and aggressive phenotype. In fact, ROS overproduction or their reduced disposal influence all hallmarks of cancer, from genome instability to cell metabolism, angiogenesis, invasion and metastasis. A persistent state of oxidative stress can even initiate tumorigenesis. MicroRNAs (miRNAs) are small non coding RNAs with regulatory functions, which expression has been extensively proven to be dysregulated in cancer. Intuitively, miRNA transcription and biogenesis are affected by the oxidative status of the cell and, in some instances, they participate in defining it. Indeed, it is widely reported the role of miRNAs in regulating numerous factors involved in the ROS signaling pathways. Given that miRNA function and modulation relies on cell type or tumor, in order to delineate a clearer and more exhaustive picture, in this review we present a comprehensive overview of the literature concerning how miRNAs and ROS signaling interplay affects breast cancer progression.


Assuntos
Neoplasias da Mama/patologia , MicroRNAs/fisiologia , Estresse Oxidativo , Proliferação de Células , Feminino , Instabilidade Genômica , Homeostase , Humanos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/fisiologia , NF-kappa B/genética , NF-kappa B/metabolismo , NF-kappa B/fisiologia , Espécies Reativas de Oxigênio/metabolismo
5.
PLoS Genet ; 9(3): e1003311, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23505378

RESUMO

MicroRNAs (miRNAs), single-stranded non-coding RNAs, influence myriad biological processes that can contribute to cancer. Although tumor-suppressive and oncogenic functions have been characterized for some miRNAs, the majority of microRNAs have not been investigated for their ability to promote and modulate tumorigenesis. Here, we established that the miR-191/425 cluster is transcriptionally dependent on the host gene, DALRD3, and that the hormone 17ß-estradiol (estrogen or E2) controls expression of both miR-191/425 and DALRD3. MiR-191/425 locus characterization revealed that the recruitment of estrogen receptor α (ERα) to the regulatory region of the miR-191/425-DALRD3 unit resulted in the accumulation of miR-191 and miR-425 and subsequent decrease in DALRD3 expression levels. We demonstrated that miR-191 protects ERα positive breast cancer cells from hormone starvation-induced apoptosis through the suppression of tumor-suppressor EGR1. Furthermore, enforced expression of the miR-191/425 cluster in aggressive breast cancer cells altered global gene expression profiles and enabled us to identify important tumor promoting genes, including SATB1, CCND2, and FSCN1, as targets of miR-191 and miR-425. Finally, in vitro and in vivo experiments demonstrated that miR-191 and miR-425 reduced proliferation, impaired tumorigenesis and metastasis, and increased expression of epithelial markers in aggressive breast cancer cells. Our data provide compelling evidence for the transcriptional regulation of the miR-191/425 cluster and for its context-specific biological determinants in breast cancers. Importantly, we demonstrated that the miR-191/425 cluster, by reducing the expression of an extensive network of genes, has a fundamental impact on cancer initiation and progression of breast cancer cells.


Assuntos
Neoplasias da Mama , Proteína 1 de Resposta de Crescimento Precoce , Receptor alfa de Estrogênio , MicroRNAs , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo
6.
Int J Cancer ; 135(9): 2034-45, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24648290

RESUMO

Histone deacetylases (HDAC) extensively contribute to the c-Myc oncogenic program, pointing to their inhibition as an effective strategy against c-Myc-overexpressing cancers. We, thus, studied the therapeutic activity of the new-generation pan-HDAC inhibitor ITF2357 (Givinostat®) against c-Myc-overexpressing human B-cell non-Hodgkin lymphomas (B-NHLs). ITF2357 anti-proliferative and pro-apoptotic effects were analyzed in B-NHL cell lines with c-Myc translocations (Namalwa, Raji and DOHH-2), stabilizing mutations (Raji) or post-transcriptional alterations (SU-DHL-4) in relationship to c-Myc modulation. ITF2357 significantly delayed the in vitro growth of all B-NHL cell lines by inducing G1 cell-cycle arrest, eventually followed by cell death. These events correlated with the extent of c-Myc protein, but not mRNA, downregulation, indicating the involvement of post-transcriptional mechanisms. Accordingly, c-Myc-targeting microRNAs let-7a and miR-26a were induced in all treated lymphomas and the cap-dependent translation machinery components 4E-BP1, eIF4E and eIF4G, as well as their upstream regulators, Akt and PIM kinases, were inhibited in function of the cell sensitivity to ITF2357, and, in turn, c-Myc downregulation. In vivo, ITF2357 significantly hampered the growth of Namalwa and Raji xenografts in immunodeficient mice. Noteworthy, its combination with suboptimal cyclophosphamide, achieved complete remissions in most animals and equaled or even exceeded the activity of optimal cyclophosphamide. Collectively, our findings provide the rationale for testing the clinical advantages of adding ITF2357 to current therapies for the still very ominous c-Myc-overexpressing lymphomas. They equally provide the proof-of-concept for its clinical evaluation in rational combination with the promising inhibitors of B-cell receptor and PI3K/Akt/mTOR axis currently in the process of development.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Linfoma de Células B/prevenção & controle , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Antineoplásicos Alquilantes/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose/efeitos dos fármacos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Ciclofosfamida/farmacologia , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Camundongos , Camundongos SCID , Proteínas Proto-Oncogênicas c-myc/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
7.
Genome Res ; 20(5): 589-99, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20439436

RESUMO

We studied miRNA profiles in 4419 human samples (3312 neoplastic, 1107 nonmalignant), corresponding to 50 normal tissues and 51 cancer types. The complexity of our database enabled us to perform a detailed analysis of microRNA (miRNA) activities. We inferred genetic networks from miRNA expression in normal tissues and cancer. We also built, for the first time, specialized miRNA networks for solid tumors and leukemias. Nonmalignant tissues and cancer networks displayed a change in hubs, the most connected miRNAs. hsa-miR-103/106 were downgraded in cancer, whereas hsa-miR-30 became most prominent. Cancer networks appeared as built from disjointed subnetworks, as opposed to normal tissues. A comparison of these nets allowed us to identify key miRNA cliques in cancer. We also investigated miRNA copy number alterations in 744 cancer samples, at a resolution of 150 kb. Members of miRNA families should be similarly deleted or amplified, since they repress the same cellular targets and are thus expected to have similar impacts on oncogenesis. We correctly identified hsa-miR-17/92 family as amplified and the hsa-miR-143/145 cluster as deleted. Other miRNAs, such as hsa-miR-30 and hsa-miR-204, were found to be physically altered at the DNA copy number level as well. By combining differential expression, genetic networks, and DNA copy number alterations, we confirmed, or discovered, miRNAs with comprehensive roles in cancer. Finally, we experimentally validated the miRNA network with acute lymphocytic leukemia originated in Mir155 transgenic mice. Most of miRNAs deregulated in these transgenic mice were located close to hsa-miR-155 in the cancer network.


Assuntos
Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Leucemia , MicroRNAs/genética , Neoplasias , Adenocarcinoma/metabolismo , Animais , Linhagem Celular Tumoral , Dosagem de Genes , Humanos , Leucemia/genética , Leucemia/metabolismo , Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Camundongos , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
8.
Int J Mol Sci ; 14(11): 22202-20, 2013 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-24284394

RESUMO

Triple Negative Breast Cancer (TNBC) is a very aggressive tumor subtype, which still lacks specific markers for an effective targeted therapy. Despite the common feature of negativity for the three most relevant receptors (ER, PgR and HER2), TNBC is a very heterogeneous disease where different subgroups can be recognized, and both gene and microRNA profiling studies have recently been carried out to dissect the different molecular entities. Moreover, several microRNAs playing a crucial role in triple negative breast cancer biology have been identified, providing the experimental basis for a possible therapeutic application. Indeed, the causal involvement of microRNAs in breast cancer and the possible use of these small noncoding RNA molecules as biomarkers has been extensively studied with promising results. Their application as therapeutic tools might represent an innovative approach, especially for a tumor subgroup still lacking an efficient and specific therapy such as TNBC. In this review, we summarize our knowledge on the most important microRNAs described in TNBC.


Assuntos
MicroRNAs/genética , Neoplasias de Mama Triplo Negativas/genética , Feminino , Humanos , MicroRNAs/classificação , MicroRNAs/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
9.
Noncoding RNA ; 10(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38250804

RESUMO

MiRNAs play crucial roles in a broad spectrum of biological processes, both physiological and pathological. Different reports implicate miR-205 in the control of breast stem cell properties. Differential miR-205 expression has been observed in different stages of mammary gland development and maturation. However, a functional role in this process has not been clearly demonstrated. We generated an miR-205 knockout in the FVB/N mouse strain, which is viable and characterized by enhanced mammary gland development. Indeed, mammary glands of miR-205-/- female mice at different ages (1.5 and 5.5 months) show increased outgrowth and branching. This evidence is consistent with our previously reported data demonstrating the direct miR-205-mediated targeting of HER3, a master regulator of mammary gland development, and the oncosuppressive activity of this microRNA in different types of breast cancer.

10.
Carcinogenesis ; 33(6): 1126-33, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22491715

RESUMO

When, ∼20 years ago, investigators first determined that components of the genome considered nonfunctional had, in fact, gene regulatory capacity, they probably had no idea of their potential in controlling cell fate and were forced to revise and somehow reorganize their view of the molecular biology. Indeed, it is currently well documented how a class of small non-coding RNAs, microRNAs, are conserved among the species, expressed in different tissues and cell types and involved in almost every biological process, including cell cycle, growth, apoptosis, differentiation and stress response, exerting a finely tuned regulation of gene expression by targeting multiple molecules. As a consequence of the widespread range of processes they are able to influence, it is not surprising that miRNA deregulation is a hallmark of several pathological conditions, including cancer. Indeed, the aberrant expression of these tiny molecules in human tumors is not just a casual association, but they can exert a causal role, as oncogenes or tumor suppressors, in different steps of the tumorigenic process, from initiation and development to progression toward the acquisition of a metastatic phenotype. An increasing body of evidence has indeed proved the importance of miRNAs in cancer, suggesting their possible use as diagnostic, prognostic and predictive biomarkers and leading to exploit miRNA-based anticancer therapies, either alone or in combination with current targeted therapies, with the goal to improve disease response and increase cure rates. Here, we review our current knowledge about miRNA involvement in cancer.


Assuntos
MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Biomarcadores Tumorais , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos
11.
PLoS One ; 17(2): e0263705, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35171928

RESUMO

The world is experiencing one of the most severe viral outbreaks in the last few years, the pandemic infection by SARS-CoV-2, the causative agent of COVID-19 disease. As of December 10th 2021, the virus has spread worldwide, with a total number of more than 267 million of confirmed cases (four times more in the last year), and more than 5 million deaths. A great effort has been undertaken to molecularly characterize the virus, track the spreading of different variants across the globe with the aim to understand the potential effects in terms of transmission capability and different fatality rates. Here we focus on the genomic diversity and distribution of the virus in the early stages of the pandemic, to better characterize the origin of COVID-19 and to define the geographical and temporal evolution of genetic clades. By performing a comparative analysis of 75401 SARS-CoV-2 reported sequences (as of December 2020), using as reference the first viral sequence reported in Wuhan in December 2019, we described the existence of 26538 genetic variants, the most frequent clustering into four major clades characterized by a specific geographical distribution. Notably, we found the most frequent variant, the previously reported missense p.Asp614Gly in the S protein, as a single mutation in only three patients, whereas in the large majority of cases it occurs in concomitance with three other variants, suggesting a high linkage and that this variant alone might not provide a significant selective advantage to the virus. Moreover, we evaluated the presence and the distribution in our dataset of the mutations characterizing the so called "british variant", identified at the beginning of 2021, and observed that 9 out of 17 are present only in few sequences, but never in linkage with each other, suggesting a synergistic effect in this new viral strain. In summary, this is a large-scale analysis of SARS-CoV-2 deposited sequences, with a particular focus on the geographical and temporal evolution of genetic clades in the early phase of COVID-19 pandemic.


Assuntos
Variação Genética , SARS-CoV-2/genética , COVID-19/virologia , Evolução Molecular , Genoma Viral , Genômica , Haplótipos , Humanos , Mutação , Pandemias , Filogenia , Filogeografia , Glicoproteína da Espícula de Coronavírus/genética
12.
Cancers (Basel) ; 14(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36358746

RESUMO

Breast cancer that highly expresses human epidermal growth factor receptor 2 (HER2+) represents one of the major breast cancer subtypes, and was associated with a poor prognosis until the introduction of HER2-targeted therapies such as trastuzumab. Unfortunately, up to 30% of patients with HER2+ localized breast cancer continue to relapse, despite treatment. MicroRNAs (miRNAs) are small (approximately 20 nucleotides long) non-coding regulatory oligonucleotides. They function as post-transcriptional regulators of gene expression, binding complementarily to a target mRNA and leading to the arrest of translation or mRNA degradation. In the last two decades, translational research has focused on these small molecules because of their highly differentiated expression patterns in blood and tumor tissue, as well as their potential biological function. In cancer research, they have become pivotal for the thorough understanding of oncogenic biological processes. They might also provide an efficient approach to early monitoring of tumor progression or response to therapy. Indeed, changes in their expression patterns can represent a flag for deeper biological changes. In this review, we sum up the recent literature regarding miRNAs in HER2+ breast cancer, taking into account their potential as powerful prognostic and predictive biomarkers, as well as therapeutic tools.

13.
Front Oncol ; 12: 1028825, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36798690

RESUMO

Background: The absence of breast cancer cells in surgical specimens, i.e., pathological complete response (pCR), is widely recognized as a favorable prognostic factor after neoadjuvant therapy. In contrast, the presence of disease at surgery characterizes a prognostically heterogeneous group of patients. Here, we challenged circulating microRNAs (miRNAs) at the end of neoadjuvant therapy as potential prognostic biomarkers in the NeoALTTO study. Methods: Patients treated within the trastuzumab arm (i.e., pre-operative weekly trastuzumab for 6 weeks followed by the addition of weekly paclitaxel for 12 weeks; post-operative FEC for 3 cycles followed by trastuzumab up to complete 1 year of treatment) were randomized into a training (n= 54) and testing (n= 72) set. RT-PCR-based high-throughput miRNA profile was performed on plasma samples collected at the end of neoadjuvant treatment of both sets. After normalization, circulating miRNAs associated with event free survival (EFS) were identified by univariate and multivariate Cox regression model. Results: Starting from 23 circulating miRNAs associated with EFS in the training set, we generated a 3-circulating miRNA prognostic signature consisting of miR-185-5p, miR-146a-5p, miR-22-3p, which was confirmed in the testing set. The 3-circulating miRNA signature showed a C-statistic of 0.62 (95% confidence interval [95%CI] 0.53-0.71) in the entire study cohort. By resorting to a multivariate Cox regression model we found a statistical significant interaction between the expression values of miR-194-5p and pCR status (p.interaction =0.005) with an estimate Hazard Ratio (HR) of 1.83 (95%CI 1.14- 2.95) in patients with pCR, and 0.87 (95%CI 0.69-1.10) in those without pCR. Notably, the model including this interaction along with the abovementioned 3-circulating miRNA signature provided the highest discriminatory capability with a C-statistic of 0.67 (95%CI 0.58-0.76). Conclusions: Circulating miRNAs are informative to identify patients with different prognosis among those with heterogeneous response after trastuzumab-based neoadjuvant treatment, and may be an exploitable tool to select candidates for salvage adjuvant therapy.

14.
Cancer Med ; 11(2): 332-339, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34921525

RESUMO

BACKGROUND: Neoadjuvant therapy with dual HER2 blockade improved pathological complete response (pCR) rate in HER2-positive breast cancer patients. Nevertheless, it would be desirable to identify patients exquisitely responsive to single agent trastuzumab to minimize or avoid overtreatment. Herein, we evaluated the predictive and prognostic value of basal primary tumor miRNA expression profile within the trastuzumab arm of NeoALTTO study (ClinicalTrials.gov Identifier: NCT00553358). METHODS: RNA samples from baseline biopsies were randomized into training (n = 45) and testing (n = 47) sets. After normalization, miRNAs associated with Event-free survival (EFS) and pCR were identified by univariate analysis. Multivariate models were implemented to generate specific signatures which were first confirmed, and then analyzed together with other clinical and pathological variables. RESULTS: We identified a prognostic signature including hsa-miR-153-3p (HR 1.831, 95% CI: 1.34-2.50) and hsa-miR-219a-5p (HR 0.629, 95% CI: 0.50-0.78). For two additional miRNAs (miR-215-5p and miR-30c-2-3p), we found a statistically significant interaction term with pCR (p.interaction: 0.017 and 0.038, respectively). Besides, a two-miRNA signature was predictive of pCR (hsa-miR-31-3p, OR 0.70, 95% CI: 0.53-0.92, and hsa-miR-382-3p, OR: 1.39, 95% CI: 1.01-1.91). Notably, the performance of this predictive miRNA signature resembled that of the genomic classifiers PAM50 and TRAR, and did not improve when the extended models were fitted. CONCLUSION: Analyses of primary tumor tissue miRNAs hold the potential of a parsimonious tool to identify patients with differential clinical outcomes after trastuzumab based neoadjuvant therapy.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , MicroRNAs/genética , Receptor ErbB-2/genética , Neoplasias da Mama/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Terapia Neoadjuvante , Prognóstico , Modelos de Riscos Proporcionais , Receptor ErbB-2/antagonistas & inibidores , Trastuzumab/administração & dosagem , Trastuzumab/efeitos adversos , Trastuzumab/uso terapêutico , Resultado do Tratamento , Carga Tumoral
15.
Biochim Biophys Acta ; 1799(10-12): 694-701, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20493980

RESUMO

microRNAs take their place into the epigenetic world revealing a complicated network of reciprocal interconnections: not only they are able to control gene expression at a post-transcriptional level, thus representing a new important class of regulatory molecules, but they are also directly connected to the epigenetic machinery through a regulatory loop. Indeed, if epigenetic modifications, such as DNA methylation or histone acetylation, have been demonstrated to affect microRNA expression, and to be potentially responsible for the aberrant miRNA regulation observed in cancer, the other side of the coin is represented by the capacity of microRNAs to control the epigenetic machinery directly targeting its enzymatic components. This review will analyze and describe the regulatory loop interconnecting microRNAs and epigenetics, describing either how epigenetics can affect the miRNome, as well as how epi-miRNAs can control the epigenome, particularly focusing on the alterations observed in human cancer.


Assuntos
Epigênese Genética , MicroRNAs/metabolismo , Neoplasias/metabolismo , Acetilação , Animais , Metilação de DNA/genética , Histonas/genética , Histonas/metabolismo , Humanos , Metilação , MicroRNAs/genética , Neoplasias/genética
16.
Nucleic Acids Res ; 37(Database issue): D41-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18945703

RESUMO

Four hundred and eighty-one ultraconserved sequences (UCRs) longer than 200 bases were discovered in the genomes of human, mouse and rat. These are DNA sequences showing 100% identity among the three species. UCRs are frequently located at genomic regions involved in cancer, differentially expressed in human leukemias and carcinomas and in some instances regulated by microRNAs (miRNAs). Here we present UCbase & miRfunc, the first database which provides ultraconserved sequences data and shows miRNA function. Also, it links UCRs and miRNAs with the related human disorders and genomic properties. The current release contains over 2000 sequences from three species (human, mouse and rat). As a web application, UCbase & miRfunc is platform independent and it is accessible at http://microrna.osu.edu/.UCbase4.


Assuntos
Sequência Conservada , DNA/química , Bases de Dados de Ácidos Nucleicos , MicroRNAs/metabolismo , Animais , Sequência de Bases , Humanos , Camundongos , MicroRNAs/química , Ratos , Interface Usuário-Computador
17.
Cancers (Basel) ; 13(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34359591

RESUMO

The clinical management of breast cancer reaches new frontiers every day. However, the number of drug resistant cases is still high, and, currently, this constitutes one of the major challenges that cancer research has to face. For instance, 50% of women affected with HER2 positive breast cancer presents or acquires resistance to trastuzumab. Moreover, for patients affected with triple negative breast cancer, standard chemotherapy is still the fist-line therapy, and often patients become resistant to treatments. Tumor microenvironment plays a crucial role in this context. Indeed, cancer-associated stromal cells deliver oncogenic cues to the tumor and vice versa to escape exogenous insults. It is well known that microRNAs are among the molecules exploited in this aberrant crosstalk. Indeed, microRNAs play a crucial function both in the induction of pro-tumoral traits in stromal cells and in the stroma-mediated fueling of tumor aggressiveness. Here, we summarize the most recent literature regarding the involvement of miRNAs in the crosstalk between tumor and stromal cells and their capability to modulate tumor microenvironment characteristics. All up-to-date findings suggest that microRNAs in the TME could serve both to reverse malignant phenotype of stromal cells, modulating response to therapy, and as predictive/prognostic biomarkers.

18.
Pharmaceuticals (Basel) ; 13(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271894

RESUMO

The functional involvement of microRNAs in human neoplasia has raised in the last years an increasing interest in the scientific community toward the potential application in clinics as therapeutic tools. Indeed, the possibility to modulate their expression to re-establish a lost equilibrium and counteract tumor growth and dissemination, and/or to improve responsiveness to standard therapies, is promising and fascinating. However, several issues need to be taken into account such as factors related to miRNA stability in the blood, tissue penetration and potential off-target effects, which might affect safety, tolerability and efficacy of an miRNA-based therapy. Here we describe the most relevant challenges related to miRNA-based therapy, review the delivery strategies exploited to date and the on-going clinical trials.

19.
Cells ; 9(9)2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32972039

RESUMO

Tumor growth and invasion occurs through a dynamic interaction between cancer and stromal cells, which support an aggressive niche. MicroRNAs are thought to act as tumor messengers to "corrupt" stromal cells. We previously demonstrated that miR-9, a known metastamiR, is released by triple negative breast cancer (TNBC) cells to enhance the transition of normal fibroblasts (NFs) into cancer-associated fibroblast (CAF)-like cells. EGF containing fibulin extracellular matrix protein 1 (EFEMP1), which encodes for the ECM glycoprotein fibulin-3, emerged as a miR-9 putative target upon miRNA's exogenous upmodulation in NFs. Here we explored the impact of EFEMP1 downmodulation on fibroblast's acquisition of CAF-like features, and how this phenotype influences neoplastic cells to gain chemoresistance. Indeed, upon miR-9 overexpression in NFs, EFEMP1 resulted downmodulated, both at RNA and protein levels. The luciferase reporter assay showed that miR-9 directly targets EFEMP1 and its silencing recapitulates miR-9-induced pro-tumoral phenotype in fibroblasts. In particular, EFEMP1 siRNA-transfected (si-EFEMP1) fibroblasts have an increased ability to migrate and invade. Moreover, TNBC cells conditioned with the supernatant of NFs transfected with miR-9 or si-EFEMP1 became more resistant to cisplatin. Overall, our results demonstrate that miR-9/EFEMP1 axis is crucial for the conversion of NFs to CAF-like cells under TNBC signaling.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Transformação Celular Neoplásica/genética , Proteínas da Matriz Extracelular/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias de Mama Triplo Negativas/genética , Animais , Antineoplásicos/farmacologia , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Transformada , Movimento Celular/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Cisplatino/farmacologia , Proteínas da Matriz Extracelular/antagonistas & inibidores , Proteínas da Matriz Extracelular/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos SCID , MicroRNAs/metabolismo , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/terapia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cancers (Basel) ; 12(8)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806777

RESUMO

Introduction: Chemotherapy is still the standard of care for triple-negative breast cancers (TNBCs). Here, we investigated miR-302b as a therapeutic tool to enhance cisplatin sensitivity in vivo and unraveled the molecular mechanism. Materials and Methods: TNBC-xenografted mice were treated with miR-302b or control, alone or with cisplatin. Genome-wide transcriptome analysis and independent-validation of Integrin Subunit Alpha 6 (ITGA6) expression was assessed on mice tumor samples. Silencing of ITGA6 was performed to evaluate cisplatin response in vitro. Further, potential transcription factors of ITGA6 (E2F transcription facor 1 (E2F1), E2F transcription factor 2 (E2F2), and Yin Yang 1 (YY1)) were explored to define the miRNA molecular mechanism. The miR-302b expression was also assessed in TNBC patients treated with chemotherapy. Results: The miR-302b-cisplatin combination significantly impaired tumor growth versus the control through indirect ITGA6 downregulation. Indeed, ITGA6 was downmodulated in mice treated with miR-302b-cisplatin, and ITGA6 silencing increased drug sensitivity in TNBC cells. In silico analyses and preclinical assays pointed out the regulatory role of the E2F family and YY1 on ITGA6 expression under miR-302b-cisplatin treatment. Finally, miR-302b enrichment correlated with better overall survival in 118 TNBC patients. Conclusion: MiR-302b can be exploited as a new therapeutic tool to improve the response to chemotherapy, modulating the E2F family, YY1, and ITGA6 expression. Moreover, miR-302b could be defined as a new prognostic factor in TNBC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA