Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 192(3): 1696-1710, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37129240

RESUMO

The genus Vaccinium L. (Ericaceae) contains premium berryfruit crops, including blueberry, cranberry, bilberry, and lingonberry. Consumption of Vaccinium berries is strongly associated with various potential health benefits, many of which are attributed to the relatively high concentrations of flavonoids, including the anthocyanins that provide the attractive red and blue berry colors. Because these phytochemicals are increasingly appealing to consumers, they have become a crop breeding target. There has been substantial recent progress in Vaccinium genomics and genetics together with new functional data on the transcriptional regulation of flavonoids. This is helping to unravel the developmental control of flavonoids and identify genetic regions and genes that can be selected for to further improve Vaccinium crops and advance our understanding of flavonoid regulation and biosynthesis across a broader range of fruit crops. In this update we consider the recent progress in understanding flavonoid regulation in fruit crops, using Vaccinium as an example and highlighting the significant gains in both genomic tools and functional analysis.


Assuntos
Flavonoides , Vaccinium , Vaccinium/genética , Antocianinas , Frutas/genética , Melhoramento Vegetal
2.
Curr Issues Mol Biol ; 46(1): 200-220, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38248317

RESUMO

In recent decades, given the important role of gamma-aminobutyric acid (GABA) in human health, scientists have paid great attention to the enrichment of this chemical compound in food using various methods, including microbial fermentation. Moreover, GABA or GABA-rich products have been successfully commercialized as food additives or functional dietary supplements. Several microorganisms can produce GABA, including bacteria, fungi, and yeasts. Among GABA-producing microorganisms, lactic acid bacteria (LAB) are commonly used in the production of many fermented foods. Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) is a LAB species that has a long history of natural occurrence and safe use in a wide variety of fermented foods and beverages. Within this species, some strains possess not only good pro-technological properties but also the ability to produce various bioactive compounds, including GABA. The present review aims, after a preliminary excursus on the function and biosynthesis of GABA, to provide an overview of the current uses of microorganisms and, in particular, of L. plantarum in the production of GABA, with a detailed focus on fermented foods. The results of the studies reported in this review highlight that the selection of new probiotic strains of L. plantarum with the ability to synthesize GABA may offer concrete opportunities for the design of new functional foods.

3.
BMC Plant Biol ; 23(1): 126, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36872311

RESUMO

BACKGROUND: Blueberries (Vaccinium section Cyanococcus) are an economically important fruit crop in the United States. Understanding genetic structure and relationships in blueberries is essential to advance the genetic improvement of horticulturally important traits. In the present study, we investigated the genomic and evolutionary relationships in 195 blueberry accessions from five species (comprising 33 V. corymbosum, 14 V. boreale, 81 V. darrowii, 29 V. myrsinites, and 38 V. tenellum) using single nucleotide polymorphisms (SNPs) mined from genotyping-by-sequencing (GBS) data. RESULTS: GBS generated ~ 751 million raw reads, of which 79.7% were mapped to the reference genome V. corymbosum cv. Draper v1.0. After filtering (read depth > 3, minor allele frequency > 0.05, and call rate > 0.9), 60,518 SNPs were identified and used in further analyses. The 195 blueberry accessions formed three major clusters on the principal component (PC) analysis plot, in which the first two PCs accounted for 29.2% of the total genetic variance. Nucleotide diversity (π) was highest for V. tenellum and V. boreale (0.023 each), and lowest for V. darrowii (0.012). Using TreeMix analysis, we identified four migration events and deciphered gene flow among the selected species. In addition, we detected a strong V. boreale lineage in cultivated blueberry species. Pairwise SweeD analysis identified a wide sweep (encompassing 32 genes) as a strong signature of domestication on the scaffold VaccDscaff 12. From this region, five genes encoded topoisomerases, six genes encoded CAP-gly domain linker (which regulates the dynamics of the microtubule cytoskeleton), and three genes coded for GSL8 (involved in the synthesis of the cell wall component callose). One of the genes, augustus_masked-VaccDscaff12-processed-gene-172.10, is a homolog of Arabidopsis AT2G25010 and encodes the protein MAINTENANCE OF MERISTEMS-like involved in root and shoot growth. Additional genomic stratification by admixture analysis identified genetic lineages and species boundaries in blueberry accessions. The results from this study indicate that V. boreale is a genetically distant outgroup, while V. darrowii, V. myrsinites, and V. tenellum are closely related. CONCLUSION: Our study provides new insights into the evolution and genetic architecture of cultivated blueberries.


Assuntos
Arabidopsis , Mirtilos Azuis (Planta) , Genômica , Pseudogenes , Parede Celular
4.
Planta ; 258(3): 50, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488440

RESUMO

MAIN CONCLUSION: DcMYB11, an R2R3 MYB gene associated with petiole anthocyanin pigmentation in carrot, was functionally characterized. A putative enhancer sequence is able to increase DcMYB11 activity. The accumulation of anthocyanin pigments can exhibit different patterns across plant tissues and crop varieties. This variability allowed the investigation of the molecular mechanisms behind the biosynthesis of these pigments in several plant species. Among crops, carrots have a well-defined anthocyanin pigmentation pattern depending on the genic background. In this work, we report on the discovery of DNA structural differences affecting the activity of an R2R3 MYB (encoded by DcMYB11) involved in anthocyanin regulation in carrot petiole. To this end, we first verified the function of DcMYB11 using heterologous systems and identified three different alleles which may explain differences in petiole pigmentation. Characterization of the DcMYB11 alleles at the 5' upstream sequence unveiled a sequence that functions as a putative enhancer. In conclusion, this study provides novel insight into the molecular mechanisms controlling anthocyanin accumulation in carrot. By these outcomes, we expanded our knowledge on the cis-regulatory sequences in plants.


Assuntos
Daucus carota , Antocianinas , Pigmentação , Alelos , Produtos Agrícolas
5.
New Phytol ; 237(3): 1024-1039, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35962608

RESUMO

Understanding chromosome recombination behavior in polyploidy species is key to advancing genetic discoveries. In blueberry, a tetraploid species, the line of evidences about its genetic behavior still remain poorly understood, owing to the inter-specific, and inter-ploidy admixture of its genome and lack of in depth genome-wide inheritance and comparative structural studies. Here we describe a new high-quality, phased, chromosome-scale genome of a diploid blueberry, clone W85. The genome was integrated with cytogenetics and high-density, genetic maps representing six tetraploid blueberry cultivars, harboring different levels of wild genome admixture, to uncover recombination behavior and structural genome divergence across tetraploid and wild diploid species. Analysis of chromosome inheritance and pairing demonstrated that tetraploid blueberry behaves as an autotetraploid with tetrasomic inheritance. Comparative analysis demonstrated the presence of a reciprocal, heterozygous, translocation spanning one homolog of chr-6 and one of chr-10 in the cultivar Draper. The translocation affects pairing and recombination of chromosomes 6 and 10. Besides the translocation detected in Draper, no other structural genomic divergences were detected across tetraploid cultivars and highly inter-crossable wild diploid species. These findings and resources will facilitate new genetic and comparative genomic studies in Vaccinium and the development of genomic assisted selection strategy for this crop.


Assuntos
Mirtilos Azuis (Planta) , Tetraploidia , Mirtilos Azuis (Planta)/genética , Padrões de Herança , Poliploidia , Cromossomos
6.
Curr Issues Mol Biol ; 44(5): 2321-2334, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35678687

RESUMO

In recent years, alongside the conventional screening procedures for the evaluation of probiotics for human usage, the pharmaceutical and food industries have encouraged scientific research towards the selection of new probiotic bacterial strains with particular functional features. Therefore, this study intended to explore novel functional properties of five Lactiplantibacillus plantarum strains isolated from bee bread. Specifically, antioxidant, antimicrobial and ß-glucosidase activities, exopolysaccharides (EPS) production and the ability to synthesize γ-aminobutyric acid (GABA) were evaluated. The results demonstrated that the investigated L. plantarum strains were effective in inhibiting the growth of some human opportunistic pathogens in vitro (Pseudomonas aeruginosa, Escherichia coli, Proteus mirabilis, Enterococcus faecalis and Staphylococcus aureus). Moreover, the evaluation of antioxidant and ß-glucosidase activity and of EPS and GABA production, revealed a different behavior among the strains, testifying how these properties are strongly strain-dependent. This suggests that a careful selection within a given species is important in order to identify appropriate strains for specific biotechnological applications. The results highlighted that the five strains of L. plantarum are promising candidates for application as dietary supplements in the human diet and as microbial cultures in specific food productions.

7.
Int J Mol Sci ; 22(1)2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375261

RESUMO

Blueberries (Vaccinium section Cyanococcus) are perennial shrubs widely cultivated for their edible fruits. In this study, we performed admixture and genetic relatedness analysis of northern highbush (NHB, primarily V. corymbosum) and southern highbush (SHB, V. corymbosum introgressed with V. darrowii, V. virgatum, or V. tenellum) blueberry genotypes, and progenies of the BNJ16-5 cross (V. corymbosum × V. darrowii). Using genotyping-by-sequencing (GBS), we generated more than 334 million reads (75 bp). The GBS reads were aligned to the V. corymbosum cv. Draper v1.0 reference genome sequence, and ~2.8 million reads were successfully mapped. From the alignments, we identified 2,244,039 single-nucleotide polymorphisms, which were used for principal component, haplotype, and admixture analysis. Principal component analysis revealed three main groups: (1) NHB cultivars, (2) SHB cultivars, and (3) BNJ16-5 progenies. The overall fixation index (FST) and nucleotide diversity for NHB and SHB cultivars indicated wide genetic differentiation, and haplotype analysis revealed that SHB cultivars are more genetically diverse than NHB cultivars. The admixture analysis identified a mixture of various lineages of parental genomic introgression. This study demonstrated the effectiveness of GBS-derived single-nucleotide polymorphism markers in genetic and admixture analyses to reveal genetic relatedness and to examine parental lineages in blueberry, which may be useful for future breeding plans.


Assuntos
Mirtilos Azuis (Planta)/genética , Linhagem da Célula , Marcadores Genéticos , Haplótipos , Melhoramento Vegetal , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Mirtilos Azuis (Planta)/classificação , Mirtilos Azuis (Planta)/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genótipo , Especificidade da Espécie , Transcriptoma
8.
J Food Sci Technol ; 57(11): 3973-3979, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33071319

RESUMO

The use of malolactic starter cultures, often offer no guarantee of microbiological success due to the chemical and physical factors (pH, ethanol, SO2, nutrient availability) that occur during the winemaking process. This study was born with the aim of improving the performance of the lactic acid bacteria used as a starter culture in the de-acidification of wines. Two commercial strains of Oenococcus oeni, were used. Was evaluated the effect of exogenous l-proline added during the bacterial growth, on the improvement of their survival in the presence of different ethanol concentrations and their ability to degrade l-malic acid in synthetic wine with the presence of 12% (v/v) and 13% (v/v) of ethanol. The results showed that l-proline improve ethanol tolerance and so the malolactic performances of O. oeni. This work represents an important strategy to ensure good vitality and improve the performance of the malolactic starter.

9.
Theor Appl Genet ; 132(9): 2485-2507, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31144001

RESUMO

KEY MESSAGE: Inheritance, QTL mapping, phylogenetic, and transcriptome (RNA-Seq) analyses provide insight into the genetic control underlying carrot root and leaf tissue-specific anthocyanin pigmentation and identify candidate genes for root phloem pigmentation. Purple carrots can accumulate large quantities of anthocyanins in their root tissues, as well as in other plant parts. This work investigated the genetic control underlying tissue-specific anthocyanin pigmentation in the carrot root phloem and xylem, and in leaf petioles. Inheritance of anthocyanin pigmentation in these three tissues was first studied in segregating F2 and F4 populations, followed by QTL mapping of phloem and xylem anthocyanin pigments (independently) onto two genotyping by sequencing-based linkage maps, to reveal two regions in chromosome 3, namely P1 and P3, controlling pigmentation in these three tissues. Both P1 and P3 condition pigmentation in the phloem, with P3 also conditioning pigmentation in the xylem and petioles. By means of linkage mapping, phylogenetic analysis, and comparative transcriptome (RNA-Seq) analysis among carrot roots with differing purple pigmentation phenotypes, we identified candidate genes conditioning pigmentation in the phloem, the main tissue influencing total anthocyanin levels in the root. Among them, a MYB transcription factor, DcMYB7, and two cytochrome CYP450 genes with putative flavone synthase activity were identified as candidates regulating both the presence/absence of pigmentation and the concentration of anthocyanins in the root phloem. Concomitant expression patterns of DcMYB7 and eight anthocyanin structural genes were found, suggesting that DcMYB7 regulates transcription levels in the latter. Another MYB, DcMYB6, was upregulated in specific purple-rooted samples, suggesting a genotype-specific regulatory activity for this gene. These data contribute to the understanding of anthocyanin regulation in the carrot root at a tissue-specific level and maybe instrumental for improving carrot nutritional value.


Assuntos
Antocianinas/genética , Daucus carota/genética , Pigmentação/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Locos de Características Quantitativas , Antocianinas/metabolismo , Cromossomos de Plantas , Cor , Daucus carota/crescimento & desenvolvimento , Daucus carota/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Filogenia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
10.
Plant Cell ; 27(4): 954-68, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25873387

RESUMO

Here, we report the draft genome sequence of Solanum commersonii, which consists of ∼830 megabases with an N50 of 44,303 bp anchored to 12 chromosomes, using the potato (Solanum tuberosum) genome sequence as a reference. Compared with potato, S. commersonii shows a striking reduction in heterozygosity (1.5% versus 53 to 59%), and differences in genome sizes were mainly due to variations in intergenic sequence length. Gene annotation by ab initio prediction supported by RNA-seq data produced a catalog of 1703 predicted microRNAs, 18,882 long noncoding RNAs of which 20% are shown to target cold-responsive genes, and 39,290 protein-coding genes with a significant repertoire of nonredundant nucleotide binding site-encoding genes and 126 cold-related genes that are lacking in S. tuberosum. Phylogenetic analyses indicate that domesticated potato and S. commersonii lineages diverged ∼2.3 million years ago. Three duplication periods corresponding to genome enrichment for particular gene families related to response to salt stress, water transport, growth, and defense response were discovered. The draft genome sequence of S. commersonii substantially increases our understanding of the domesticated germplasm, facilitating translation of acquired knowledge into advances in crop stability in light of global climate and environmental changes.


Assuntos
Genoma de Planta/genética , Solanum tuberosum/genética , Solanum/genética , Aclimatação , Evolução Biológica , Filogenia , Solanum/classificação , Solanum tuberosum/classificação
11.
World J Microbiol Biotechnol ; 34(11): 161, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30357477

RESUMO

In this study, the effect of sequential inoculation with non-Saccharomyces (Hanseniaspora guilliermondii) and Saccharomyces cerevisiae yeast on the distinctive characteristics of the Campanino white wine was investigated. For this purpose, three independent winemaking experiments were carried out on an industrial scale (batches A, B and C). In detail, the first one was carried out using the sequential inoculation technique while the other two, using a S. cerevisiae single-strain starter or no inoculation representing the control batches. Microbiological and chemical parameters and sensorial profiles of the wines were defined. Interestingly, the results showed that when sequential cultures (H. guilliermondii in a sequential mixture with S. cerevisiae) were used, a better wine aroma and quality was observed. More specifically, the wine obtained by sequential inoculation showed lower acetic acid values and enhanced volatile profiles than the wine from the control batches. Finally, sensorial analysis confirmed that the sequential cultures led to an improvement in wine flavour. Therefore, results suggest that the sequential inoculation using non-Saccharomyces and Saccharomyces yeast represents a biotechnological practice that can improve the quality features of traditional white wine. It has been shown for the first time that on an industrial scale H. guilliermondii could be used in sequential inoculum with S. cerevisiae in making white Campanino wine.


Assuntos
Hanseniaspora/crescimento & desenvolvimento , Microbiologia Industrial/métodos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Vinho/microbiologia , Ácido Acético , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Meios de Cultura/metabolismo , Fermentação , Hanseniaspora/metabolismo , Cinética , Odorantes , Saccharomyces cerevisiae/metabolismo , Compostos Orgânicos Voláteis/análise
12.
Am J Bot ; 104(2): 296-312, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28202452

RESUMO

PREMISE OF THE STUDY: We explored the phylogenetic utility of entire plastid DNA sequences in Daucus and compared the results with prior phylogenetic results using plastid and nuclear DNA sequences. METHODS: We used Illumina sequencing to obtain full plastid sequences of 37 accessions of 20 Daucus taxa and outgroups, analyzed the data with phylogenetic methods, and examined evidence for mitochondrial DNA transfer to the plastid (DcMP). KEY RESULTS: Our phylogenetic trees of the entire data set were highly resolved, with 100% bootstrap support for most of the external and many of the internal clades, except for the clade of D. carota and its most closely related species D. syrticus. Subsets of the data, including regions traditionally used as phylogenetically informative regions, provide various degrees of soft congruence with the entire data set. There are areas of hard incongruence, however, with phylogenies using nuclear data. We extended knowledge of a mitochondrial to plastid DNA insertion sequence previously named DcMP and identified the first instance in flowering plants of a sequence of potential nuclear genome origin inserted into the plastid genome. There is a relationship of inverted repeat junction classes and repeat DNA to phylogeny, but no such relationship with nonsynonymous mutations. CONCLUSIONS: Our data have allowed us to (1) produce a well-resolved plastid phylogeny of Daucus, (2) evaluate subsets of the entire plastid data for phylogeny, (3) examine evidence for plastid and nuclear DNA phylogenetic incongruence, and (4) examine mitochondrial and nuclear DNA insertion into the plastid.


Assuntos
Núcleo Celular/genética , Daucus carota/genética , Genoma Mitocondrial/genética , Genoma de Planta/genética , Genomas de Plastídeos/genética , Filogenia , DNA de Cloroplastos/genética , DNA Mitocondrial/genética , DNA de Plantas/química , DNA de Plantas/classificação , DNA de Plantas/genética , Daucus carota/classificação , Genes de Plantas/genética , Mutagênese Insercional , Proteínas de Plantas/genética , Plastídeos/genética , Análise de Sequência de DNA , Especificidade da Espécie
13.
BMC Genomics ; 17: 451, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27295982

RESUMO

BACKGROUND: The application of genotyping by sequencing (GBS) approaches, combined with data imputation methodologies, is narrowing the genetic knowledge gap between major and understudied, minor crops. GBS is an excellent tool to characterize the genomic structure of recently domesticated (~200 years) and understudied species, such as cranberry (Vaccinium macrocarpon Ait.), by generating large numbers of markers for genomic studies such as genetic mapping. RESULTS: We identified 10842 potentially mappable single nucleotide polymorphisms (SNPs) in a cranberry pseudo-testcross population wherein 5477 SNPs and 211 short sequence repeats (SSRs) were used to construct a high density linkage map in cranberry of which a total of 4849 markers were mapped. Recombination frequency, linkage disequilibrium (LD), and segregation distortion at the genomic level in the parental and integrated linkage maps were characterized for first time in cranberry. SSR markers, used as the backbone in the map, revealed high collinearity with previously published linkage maps. The 4849 point map consisted of twelve linkage groups spanning 1112 cM, which anchored 2381 nuclear scaffolds accounting for ~13 Mb of the estimated 470 Mb cranberry genome. Bin mapping identified 592 and 672 unique bins in the parentals and a total of 1676 unique marker positions in the integrated map. Synteny analyses comparing the order of anchored cranberry scaffolds to their homologous positions in kiwifruit, grape, and coffee genomes provided initial evidence of homology between cranberry and closely related species. CONCLUSIONS: GBS data was used to rapidly saturate the cranberry genome with markers in a pseudo-testcross population. Collinearity between the present saturated genetic map and previous cranberry SSR maps suggests that the SNP locations represent accurate marker order and chromosome structure of the cranberry genome. SNPs greatly improved current marker genome coverage, which allowed for genome-wide structure investigations such as segregation distortion, recombination, linkage disequilibrium, and synteny analyses. In the future, GBS can be used to accelerate cranberry molecular breeding through QTL mapping and genome-wide association studies (GWAS).


Assuntos
Mapeamento Cromossômico , Ligação Genética , Genoma de Planta , Genômica , Genótipo , Vaccinium macrocarpon/genética , Análise por Conglomerados , Genômica/métodos , Desequilíbrio de Ligação , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Sintenia
14.
J Hered ; 107(2): 187-92, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26663623

RESUMO

In plants, the most widely used cytological techniques to assess parental genome contributions are based on in situ hybridization (FISH and GISH), but they are time-consuming and need specific expertise and equipment. Recent advances in genomics and molecular biology have made PCR-based markers a straightforward, affordable technique for chromosome typing. Here, we describe the development of a molecular assay that uses single-copy conserved ortholog set II (COSII)-based single nucleotide polymorphisms (SNPs) and the high-resolution melting (HRM) technique to assess the chromosome dosage of interspecific hybrids between a Solanum phureja-S. tuberosum diploid (2n = 2x = 24) hybrid and its wild relative S. commersonii. Screening and analysis of 45 COSII marker sequences allowed S. commersonii-specific SNPs to be identified for all 12 chromosomes. Combining the HRM technique with the establishment of synthetic DNA hybrids, SNP markers were successfully used to predict the expected parental chromosome ratio of 5 interspecific triploid hybrids. These results demonstrate the ability of this strategy to distinguish diverged genomes from each other, and to estimate chromosome dosage. The method could potentially be applied to any species as a tool to assess paternal to maternal ratios in the framework of a breeding program or following transformation techniques.


Assuntos
Dosagem de Genes , Genoma de Planta , Ploidias , Solanum tuberosum/genética , Cruzamento , Cromossomos de Plantas , DNA de Plantas/genética , Marcadores Genéticos , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único
15.
J Dairy Sci ; 99(12): 9521-9533, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27771088

RESUMO

Five protected designation of origin (PDO) Caciocavallo Silano and 6 non-PDO Caciocavallo cheeses, ripened for 6mo and collected in the 5 Italian regions of the PDO area (Apulia, Basilicata, Calabria, Campania, and Molise, Italy), were studied to assess their physico-chemical (pH, acidity, moisture, fat, ash, protein, and free amino acid composition) and microbiological profiles. Analyses evidenced a certain fluctuation of previous parameters among samples regardless of the kind of cheese evaluated (PDO and non-PDO). The PCR-denaturing gradient gel electrophoresis analysis performed on the DNA directly extracted from cheeses gave different results, but a low number of bands was always observed. Only one band, corresponding to the species Streptococcus thermophilus, was detectable in 1 PDO and in 2 non-PDO cheese samples, whose free amino acid content was the lowest. Analyses were repeated on experimental Caciocavallo cheeses. Specifically, 2 productions were made, one mimicking the industrial technology (pasteurized milk and selected starter culture) and one the artisanal technology (raw milk and natural whey starter). Results obtained on experimental cheeses at 6mo of ripening showed that industrial samples had lower amounts of total free amino acids then the artisanal ones (1,188.2 vs. 7,523.67mg/100 g of dry matter). Moreover, the PCR-denaturing gradient gel electrophoresis analysis evidenced the sole presence of S. thermophilus in the case of the industrial technology. These data sustain the hypothesis that, out of 11 cheeses analyzed previously, 1 PDO Caciocavallo Silano and 2 non-PDO Caciocavallo cheeses were obtained with the industrial technology. These results could be of help in the discrimination of PDO products, taking into account that the PDO production regulation does not allow the milk pasteurization, nor the use of selected starters.


Assuntos
Aminoácidos , Queijo/análise , Queijo/microbiologia , Animais , Itália , Leite/microbiologia
16.
ScientificWorldJournal ; 2016: 1917592, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446986

RESUMO

Technological properties of two strains of Lactobacillus plantarum (B3 and B11) and one of Lactobacillus pentosus (B4), previously isolated from natural fermented green olives, have been studied in vitro. Acidifying ability, salt, temperature, and pH tolerances of all strains were found in the range reported for similar strains produced in Italy and optimal growth conditions were found to be 6.0-8.0 pH, 15-30°C temperature, and less than 6% NaCl. Moreover, all strains showed very good tolerance to common olive phenol content (0.3% total phenol) and high oleuropein-degrading capability. It was found that medium composition affected the bacterial oleuropein degradation. B11 strain grown in a nutrient-rich medium showed a lower oleuropein-degrading action than when it was cultivated in nutrient-poor medium. Furthermore, enzymatic activity assays revealed that oleuropein depletion did not correspond to an increase of hydroxytyrosol, evidencing that bacterial strains could efficiently degrade oleuropein via a mechanism different from hydrolysis.


Assuntos
Fermentação , Iridoides/metabolismo , Lactobacillus , Olea/microbiologia , Microbiologia Industrial , Glucosídeos Iridoides , Itália
17.
Phytopathology ; 105(8): 1131-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25775104

RESUMO

Plants have evolved strategies and mechanisms to detect and respond to pathogen attack. Different organs of the same plant may be subjected to different environments (e.g., aboveground versus belowground) and pathogens with different lifestyles. Accordingly, plants commonly need to tailor defense strategies in an organ-specific manner. Phytophthora infestans, causal agent of potato late blight disease, infects both aboveground foliage and belowground tubers. We examined the efficacy of transgene RB (known for conferring foliar late blight resistance) in defending against tuber late blight disease. Our results indicate that the presence of the transgene has a positive yet only marginally significant effect on tuber disease resistance on average. However, a significant association between transgene transcript levels and tuber resistance was established for specific transformed lines in an age-dependent manner, with higher transcript levels indicating enhanced tuber resistance. Thus, RB has potential to function in both foliage and tuber to impart late blight resistance. Our data suggest that organ-specific resistance might result directly from transcriptional regulation of the resistance gene itself.


Assuntos
Regulação da Expressão Gênica de Plantas , Phytophthora infestans/patogenicidade , Doenças das Plantas/imunologia , Solanum tuberosum/genética , Resistência à Doença , Especificidade de Órgãos , Fenótipo , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos/genética , Tubérculos/imunologia , Tubérculos/microbiologia , Plantas Geneticamente Modificadas , Solanum tuberosum/imunologia , Solanum tuberosum/microbiologia , Fatores de Tempo , Transgenes
18.
BMC Genomics ; 15: 1118, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25514876

RESUMO

BACKGROUND: Purple carrots accumulate large quantities of anthocyanins in their roots and leaves. These flavonoid pigments possess antioxidant activity and are implicated in providing health benefits. Informative, saturated linkage maps associated with well characterized populations segregating for anthocyanin pigmentation have not been developed. To investigate the genetic architecture conditioning anthocyanin pigmentation we scored root color visually, quantified root anthocyanin pigments by high performance liquid chromatography in segregating F2, F3 and F4 generations of a mapping population, mapped quantitative trait loci (QTL) onto a dense gene-derived single nucleotide polymorphism (SNP)-based linkage map, and performed comparative trait mapping with two unrelated populations. RESULTS: Root pigmentation, scored visually as presence or absence of purple coloration, segregated in a pattern consistent with a two gene model in an F2, and progeny testing of F3-F4 families confirmed the proposed genetic model. Purple petiole pigmentation was conditioned by a single dominant gene that co-segregates with one of the genes conditioning root pigmentation. Root total pigment estimate (RTPE) was scored as the percentage of the root with purple color.All five anthocyanin glycosides previously reported in carrot, as well as RTPE, varied quantitatively in the F2 population. For the purpose of QTL analysis, a high resolution gene-derived SNP-based linkage map of carrot was constructed with 894 markers covering 635.1 cM with a 1.3 cM map resolution. A total of 15 significant QTL for all anthocyanin pigments and for RTPE mapped to six chromosomes. Eight QTL with the largest phenotypic effects mapped to two regions of chromosome 3 with co-localized QTL for several anthocyanin glycosides and for RTPE. A single dominant gene conditioning anthocyanin acylation was identified and mapped.Comparative mapping with two other carrot populations segregating for purple color indicated that carrot anthocyanin pigmentation is controlled by at least three genes, in contrast to monogenic control reported previously. CONCLUSIONS: This study generated the first high resolution gene-derived SNP-based linkage map in the Apiaceae. Two regions of chromosome 3 with co-localized QTL for all anthocyanin pigments and for RTPE, largely condition anthocyanin accumulation in carrot roots and leaves. Loci controlling root and petiole anthocyanin pigmentation differ across diverse carrot genetic backgrounds.


Assuntos
Antocianinas/análise , Cromossomos de Plantas , Daucus carota/genética , Locos de Características Quantitativas , Antocianinas/biossíntese , Antocianinas/genética , Cromatografia Líquida de Alta Pressão , Mapeamento Cromossômico , Hibridização Genômica Comparativa , Daucus carota/química , Daucus carota/metabolismo , Ligação Genética , Pigmentação/genética , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único
19.
BMC Genet ; 15: 123, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25403706

RESUMO

BACKGROUND: Wild potato Solanum bulbocastanum is a rich source of genetic resistance against a variety of pathogens. It belongs to a taxonomic group of wild potato species sexually isolated from cultivated potato. Consistent with genetic isolation, previous studies suggested that the genome of S. bulbocastanum (B genome) is structurally distinct from that of cultivated potato (A genome). However, the genome architecture of the species remains largely uncharacterized. The current study employed Diversity Arrays Technology (DArT) to generate a linkage map for S. bulbocastanum and compare its genome architecture with those of potato and tomato. RESULTS: Two S. bulbocastanum parental linkage maps comprising 458 and 138 DArT markers were constructed. The integrated map comprises 401 non-redundant markers distributed across 12 linkage groups for a total length of 645 cM. Sequencing and alignment of DArT clones to reference physical maps from tomato and cultivated potato allowed direct comparison of marker orders between species. A total of nine genomic segments informative in comparative genomic studies were identified. Seven genome rearrangements correspond to previously-reported structural changes that have occurred since the speciation of tomato and potato. We also identified two S. bulbocastanum genomic regions that differ from cultivated potato, suggesting possible chromosome divergence between Solanum A and B genomes. CONCLUSIONS: The linkage map developed here is the first medium density map of S. bulbocastanum and will assist mapping of agronomical genes and QTLs. The structural comparison with potato and tomato physical maps is the first genome wide comparison between Solanum A and B genomes and establishes a foundation for further investigation of B genome-specific structural chromosome rearrangements.


Assuntos
Cromossomos de Plantas/genética , Solanum/genética , Mapeamento Cromossômico , Ligação Genética , Marcadores Genéticos , Genoma de Planta , Locos de Características Quantitativas , Análise de Sequência de DNA
20.
J Hered ; 105(2): 288-91, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24336925

RESUMO

Root-knot nematodes limit carrot production around the world by inducing taproot forking and galling deformities that render carrots unmarketable. In warmer climates, Meloidogyne javanica and Meloidogyne incognita are most prevalent. In F2 and F3 progeny from the cross between an Asian carrot resistant to M. javanica, PI 652188, and a susceptible carrot, resistance response was incompletely dominant with a relatively high heritability (H (2) = 0.78) and provided evidence for a single gene, designated Mj-2, contributing to resistance. Molecular markers linked to the previously described root-knot nematode resistance gene, Mj-1 on chromosome 8 derived from "Brasilia," demonstrated that Mj-2 does not map to that same locus but is on the same chromosome.


Assuntos
Mapeamento Cromossômico , Daucus carota/genética , Genes de Plantas , Raízes de Plantas/genética , Tylenchoidea , Animais , Cruzamentos Genéticos , DNA de Plantas/genética , Daucus carota/parasitologia , Repetições de Microssatélites , Doenças das Plantas/parasitologia , Imunidade Vegetal/genética , Raízes de Plantas/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA