Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Autoimmun ; 144: 103181, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38522129

RESUMO

Inflammatory bowel diseases (IBDs) are chronic intestinal disorders often characterized by a dysregulation of T cells, specifically T helper (Th) 1, 17 and T regulatory (Treg) repertoire. Increasing evidence demonstrates that dietary polyphenols from Mangifera indica L. extract (MIE, commonly known as mango) mitigate intestinal inflammation and splenic Th17/Treg ratio. In this study, we aimed to dissect the immunomodulatory and anti-inflammatory properties of MIE using a reverse translational approach, by initially using blood from an adult IBD inception cohort and then investigating the mechanism of action in a preclinical model of T cell-driven colitis. Of clinical relevance, MIE modulates TNF-α and IL-17 levels in LPS spiked sera from IBD patients as an ex vivo model of intestinal barrier breakdown. Preclinically, therapeutic administration of MIE significantly reduced colitis severity, pathogenic T-cell intestinal infiltrate and intestinal pro-inflammatory mediators (IL-6, IL-17A, TNF-α, IL-2, IL-22). Moreover, MIE reversed colitis-induced gut permeability and restored tight junction functionality and intestinal metabolites. Mechanistic insights revealed MIE had direct effects on blood vascular endothelial cells, blocking TNF-α/IFN-γ-induced up-regulation of COX-2 and the DP2 receptors. Collectively, we demonstrate the therapeutic potential of MIE to reverse the immunological perturbance during the onset of colitis and dampen the systemic inflammatory response, paving the way for its clinical use as nutraceutical and/or functional food.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Mangifera , Adulto , Humanos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Células Endoteliais/metabolismo , Mucosa Intestinal , Modelos Animais de Doenças
2.
Ann Rheum Dis ; 82(11): 1415-1428, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37580108

RESUMO

OBJECTIVES: Interleukin (IL) 17s cytokines are key drivers of inflammation that are functionally dysregulated in several human immune-mediated inflammatory diseases (IMIDs), such as rheumatoid arthritis (RA), psoriasis and inflammatory bowel disease (IBD). Targeting these cytokines has some therapeutic benefits, but issues associated with low therapeutic efficacy and immunogenicity for subgroups of patients or IMIDs reduce their clinical use. Therefore, there is an urgent need to improve the coverage and efficacy of antibodies targeting IL-17A and/or IL-17F and IL-17A/F heterodimer. METHODS AND RESULTS: Here, we initially identified a bioactive 20 amino acid IL-17A/F-derived peptide (nIL-17) that mimics the pro-inflammatory actions of the full-length proteins. Subsequently, we generated a novel anti-IL-17 neutralising monoclonal antibody (Ab-IPL-IL-17) capable of effectively reversing the pro-inflammatory, pro-migratory actions of both nIL-17 and IL-17A/F. Importantly, we demonstrated that Ab-IPL-IL-17 has less off-target effects than the current gold-standard biologic, secukinumab. Finally, we compared the therapeutic efficacy of Ab-IPL-IL-17 with reference anti-IL-17 antibodies in preclinical murine models and samples from patients with RA and IBD. We found that Ab-IPL-IL-17 could effectively reduce clinical signs of arthritis and neutralise elevated IL-17 levels in IBD patient serum. CONCLUSIONS: Collectively, our preclinical and in vitro clinical evidence indicates high efficacy and therapeutic potency of Ab-IPL-IL-17, supporting the rationale for large-scale clinical evaluation of Ab-IPL-IL-17 in patients with IMIDs.


Assuntos
Artrite Reumatoide , Produtos Biológicos , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , Interleucina-17 , Agentes de Imunomodulação , Citocinas , Doenças Inflamatórias Intestinais/tratamento farmacológico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico
3.
Pharmacol Res ; 187: 106595, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470548

RESUMO

Alzheimer's disease (AD) is one of the most prevalent forms of neurodegenerative disorders. Previously, we have shown that in vivo administration of an IL-17 neutralizing antibody (IL-17Ab) rescues amyloid-ß-induced neuro-inflammation and memory impairment, demonstrating the pivotal role of IL-17 in AD-derived cognitive deficit. Recently, AD has been recognized as a more intriguing pathology affecting vascular networks and platelet function. However, not much is known about peripheral vascular inflammation and how pro-inflammatory circulating cells/mediators could affect peripheral vessels' function. This study aimed to evaluate whether IL-17Ab treatment could also impact peripheral AD features, such as systemic inflammation, peripheral vascular dysfunction, and related pro-thrombotic state in a non-genetic mouse model of AD. Mice were injected intracerebroventricularly with Aß1-42 peptide (3 µg/3 µl). To evaluate the systemic/peripheral protective profile of IL-17Ab, we used an intranasal administration of IL-17Ab (1 µg/10 µl) at 5, 12, and 19 days after Aß1-42 injection. Circulating Th17/Treg cells and related cyto-chemokines, haematological parameters, vascular/endothelial reactivity, platelets and coagulation function in mice were evaluated. IL-17Ab treatment ameliorates the systemic/peripheral inflammation, immunological perturbance, vascular/endothelial impairment and pro-thrombotic state, suggesting a key role for this cytokine in fostering inflammatory processes that characterize the multifaced aspects of AD.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Citocinas , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/patologia , Interleucina-17 , Fragmentos de Peptídeos/farmacologia
4.
Cardiovasc Diabetol ; 21(1): 253, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36403025

RESUMO

Galectins are ß-galactoside-binding proteins that bind and crosslink molecules via their sugar moieties, forming signaling and adhesion networks involved in cellular communication, differentiation, migration, and survival. Galectins are expressed ubiquitously across immune cells, and their function varies with their tissue-specific and subcellular location. Particularly galectin-1, -3, and -9 are highly expressed by inflammatory cells and are involved in the modulation of several innate and adaptive immune responses. Modulation in the expression of these proteins accompany major processes in cardiovascular diseases and metabolic disorders, such as atherosclerosis, thrombosis, obesity, and diabetes, making them attractive therapeutic targets. In this review we consider the broad cellular activities ascribed to galectin-1, -3, and -9, highlighting those linked to the progression of different inflammatory driven pathologies in the context of cardiovascular and metabolic disease, to better understand their mechanism of action and provide new insights into the design of novel therapeutic strategies.


Assuntos
Aterosclerose , Doenças Metabólicas , Humanos , Galectina 1/metabolismo , Galectinas/química , Galectinas/metabolismo , Imunidade , Aterosclerose/tratamento farmacológico , Doenças Metabólicas/tratamento farmacológico
5.
Pharmacol Res ; 182: 106283, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35662629

RESUMO

In the context of inflammation and immunity, there are fragmented and observational studies relating to the pharmacological activity of Mangifera indica L. and its main active component, mangiferin. Therefore, we aimed to analyze the potential beneficial effects of this plant extract (MIE, 90 % in mangiferin) in a mouse model of gouty arthritis, to allow the evaluation of cellular immune phenotypes and the biochemical mechanism/s beyond MIE activity. Gouty arthritis was induced by the intra-articular administration of MSU crystals (200 µg 20 µl-1), whereas MIE (0.1-10 mg kg-1) or corresponding vehicle (DMSO/saline 1:3) were orally administrated concomitantly with MSU (time 0), 6 and 12 h after the stimulus. Thereafter, knee joint score and oedema were evaluated in addition to western blot analysis for COX-2/mPGES-1 axis. Moreover, the analysis of pro/anti-inflammatory cyto-chemokines coupled with the phenotyping of the cellular infiltrate was performed. Treatment with MIE revealed a dose-dependent reduction in joint inflammatory scores with maximal inhibition observed at 10 mg kg-1. MIE significantly reduced leukocyte infiltration and activation and the expression of different pro-inflammatory cyto-chemokines in inflamed tissues. Furthermore, biochemical analysis revealed that MIE modulated COX-2/mPGES-1 and mPGDS-1/PPARγ pathways. Flow cytometry analysis also highlighted a prominent modulation of inflammatory monocytes (CD11b+/CD115+/LY6Chi), and Treg cells (CD4+/CD25+/FOXP3+) after MIE treatment. Collectively, the results of this study demonstrate a novel function of MIE to positively affect the local and systemic inflammatory/immunological perturbance in the onset and progression of gouty arthritis.


Assuntos
Artrite Gotosa , Mangifera , Extratos Vegetais , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Artrite Gotosa/tratamento farmacológico , Artrite Gotosa/metabolismo , Ciclo-Oxigenase 2/metabolismo , Mangifera/química , Camundongos , Extratos Vegetais/farmacologia , Linfócitos T Reguladores , Células Th17
6.
Int J Mol Sci ; 21(19)2020 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-32993051

RESUMO

Cytokines and extracellular vesicles are two methods of initiating and maintaining cellular crosstalk. The role of cytokines in the initiation, progression, and resolution of inflammation has been well studied and more so, their pathophysiological role in the development of autoimmune disease. In recent years, the impact of extracellular vesicles on the progression of autoimmunity has become more widely appreciated. In this review, we discuss the mechanisms that allow extracellular vesicles of various sources to modulate cytokine production, and release, and how extracellular vesicles might be involved in the direct delivery and modulation of cytokine levels. Moreover, we explore what challenges are faced by current therapies and the promising future for extracellular vesicles as therapeutic agents in conditions driven by immune dysregulation.


Assuntos
Doenças Autoimunes/imunologia , Autoimunidade , Citocinas/imunologia , Vesículas Extracelulares/imunologia , Animais , Doenças Autoimunes/patologia , Vesículas Extracelulares/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia
7.
Molecules ; 25(24)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353211

RESUMO

Several natural-based compounds and products are reported to possess anti-inflammatory and immunomodulatory activity both in vitro and in vivo. The primary target for these activities is the inhibition of eicosanoid-generating enzymes, including phospholipase A2, cyclooxygenases (COXs), and lipoxygenases, leading to reduced prostanoids and leukotrienes. Other mechanisms include modulation of protein kinases and activation of transcriptases. However, only a limited number of studies and reviews highlight the potential modulation of the coupling enzymatic pathway COX-2/mPGES-1 and Th17/Treg circulating cells. Here, we provide a brief overview of natural products/compounds, currently included in the Italian list of botanicals and the BELFRIT, in different fields of interest such as inflammation and immunity. In this context, we focus our opinion on novel therapeutic targets such as COX-2/mPGES-1 coupling enzymes and Th17/Treg circulating repertoire. This paper is dedicated to the scientific career of Professor Nicola Mascolo for his profound dedication to the study of natural compounds.


Assuntos
Anti-Inflamatórios/farmacologia , Doenças Autoimunes/tratamento farmacológico , Produtos Biológicos/farmacologia , Ciclo-Oxigenase 1/metabolismo , Inflamação/tratamento farmacológico , Anti-Inflamatórios/química , Doenças Autoimunes/metabolismo , Produtos Biológicos/química , Terapias Complementares , Ciclo-Oxigenase 2/metabolismo , Humanos , Inflamação/metabolismo , Microssomos/efeitos dos fármacos , Microssomos/metabolismo , Células Th17
9.
Biomed Pharmacother ; 151: 113171, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35643073

RESUMO

Adaptive immunity relies on the efficient recruitment of T cells from the blood into peripheral tissues. However, the current understanding of factor(s) coordinating these events is incomplete. Previous studies on galectin-9 (Gal-9), have proposed a functionally significant role for this lectin in mediating leukocyte adhesion and transmigration. However, very little is known about its function in T cell migration. Here, we have investigated the role of the Gal-9 on the migration behaviour of both human primary CD4+ and CD8+ T cells. Our data indicate that Gal-9 supports both CD4+ and CD8+ T cell adhesion and transmigration in a glycan dependent manner, inducing L-selectin shedding and upregulation of LFA-1 and CXCR4 expression. Additionally, when immobilized, Gal-9 promoted capture and firm adhesion of T cells under flow, in a glycan and integrin-dependent manner. Using an in vivo model, dorsal air pouch, we found that Gal-9 deficient mice display impaired leukocyte trafficking, with a reduction in pro-inflammatory cytokines/chemokines generated locally. Furthermore, we also demonstrate that Gal-9 inhibits the chemotactic function of CXCL12 through direct binding. In conclusion, our study characterises, for the first time, the capture, adhesion, and migration behaviour of CD4+ and CD8+ T cells to immobilised /endothelial presented Gal-9, under static and physiological flow conditions. We also demonstrate the differential binding characteristics of Gal-9 to T cell subtypes, which could be of potential therapeutic significance, particularly in the treatment of inflammatory-based diseases, given Gal-9 ability to promote apoptosis in pathogenic T cell subsets.


Assuntos
Integrinas , Migração Transendotelial e Transepitelial , Animais , Linfócitos T CD8-Positivos , Galectinas , Camundongos , Polissacarídeos
10.
Br J Pharmacol ; 179(9): 1857-1873, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33595097

RESUMO

BACKGROUND AND PURPOSE: Recent biochemical and pharmacological studies have reported that in several tissues and cell types, microsomal PGE2 synthase (mPGES) and PPAR-γ expression are modulated by a variety of inflammatory factors and stimuli. Considering that very little is known about the biological effects promoted by IL-17 in the context of mPGES-1/PPAR-γ modulation, we sought to investigate the contribution of this unique cytokine on this integrated pathway during the onset of inflammation. EXPERIMENTAL APPROACH: We evaluated effects of PF 9184 (mPGES-1 inhibitor) and troglitazone (PPAR-γ agonist) in vitro, using the mouse macrophage cell line J774A.1. In vivo, the dorsal air pouch model in CD1 mice was used, and inflammatory infiltrates were analysed by flow cytometry. Locally produced cyto-chemokines and PGs were assessed using elisa assays. Western blots were also employed to determine the activity of various enzymes involved in downstream signalling pathways. KEY RESULTS: PF 9184 and troglitazone, in a time- and dose-dependent manner, modulated leukocyte infiltration, myeloperoxidase activity, and the expression of COX-2/mPGES-1, NF-кB/IкB-α, and mPTGDS-1/PPAR-γ, induced by IL-17. Moreover, both PF 9184 and troglitazone modulated PG (PGE2 , PGD2 , and PGJ2 ) production, the expression of different pro-inflammatory cyto-chemokines, and the recruitment of inflammatory monocytes, in response to IL-17. CONCLUSIONS AND IMPLICATIONS: Our data suggest that IL-17 may constitute a specific modulator of inflammatory monocytes during later phases of the inflammatory response. The results of this study show, for the first time, that the IL-17/mPGES-1/PPAR-γ pathway could represent a potential therapeutic target for inflammatory-based and immune-mediated diseases. LINKED ARTICLES: This article is part of a themed issue on Inflammation, Repair and Ageing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.9/issuetoc.


Assuntos
Interleucina-17 , PPAR gama , Animais , Inflamação/metabolismo , Macrófagos , Camundongos , Monócitos/metabolismo , PPAR gama/metabolismo , Prostaglandina-E Sintases/metabolismo
11.
Front Immunol ; 12: 762016, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777378

RESUMO

Gout is caused by depositing monosodium urate (MSU) crystals within the articular area. The infiltration of neutrophils and monocytes drives the initial inflammatory response followed by lymphocytes. Interestingly, emerging evidence supports the view that in situ imbalance of T helper 17 cells (Th17)/regulatory T cells (Treg) impacts the subsequent damage to target tissues. Galectin-9 (Gal-9) is a modulator of innate and adaptive immunity with both pro- and anti-inflammatory functions, dependent upon its expression and cellular location. However, the specific cellular and molecular mechanisms by which Gal-9 modulates the inflammatory response in the onset and progression of gouty arthritis has yet to be elucidated. In this study, we sought to comprehensively characterise the functional role of exogenous Gal-9 in an in vivo model of MSU crystal-induced gouty inflammation by monitoring in situ neutrophils, monocytes and Th17/Treg recruited phenotypes and related cyto-chemokines profile. Treatment with Gal-9 revealed a dose-dependent reduction in joint inflammation scores, knee joint oedema and expression of different pro-inflammatory cyto-chemokines. Furthermore, flow cytometry analysis highlighted a significant modulation of infiltrating inflammatory monocytes (CD11b+/CD115+/LY6-Chi) and Th17 (CD4+/IL-17+)/Treg (CD4+/CD25+/FOXP-3+) cells following Gal-9 treatment. Collectively the results presented in this study indicate that the administration of Gal-9 could provide a new therapeutic strategy for preventing tissue damage in gouty arthritic inflammation and, possibly, in other inflammatory-based diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Artrite Gotosa/tratamento farmacológico , Galectinas/uso terapêutico , Animais , Articulação do Tornozelo/imunologia , Artrite Gotosa/imunologia , Células Cultivadas , Citocinas/imunologia , Humanos , Masculino , Camundongos , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Ácido Úrico
13.
DNA Cell Biol ; 38(10): 1025-1029, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31532239

RESUMO

Neutrophil trafficking into damaged or infected tissues is essential for the initiation of inflammation, clearance of pathogens and damaged cells, and ultimately tissue repair. Neutrophil recruitment is highly dependent on the stepwise induction of adhesion molecules and promigratory chemokines and cytokines. A number of studies in animal models have shown the efficacy of cannabinoid receptor 2 (CB2) agonists in limiting inflammation in a range of preclinical models of inflammation, including colitis, atherosclerosis, multiple sclerosis, and ischemia-reperfusion injury. Recent work in preclinical models of inflammation raises two questions: by what mechanisms do CB2 agonists provide anti-inflammatory effects during acute inflammation and what challenges exist in the translation of CB2 modulating therapeutics into the clinic.


Assuntos
Aterosclerose/genética , Colite/genética , Esclerose Múltipla/genética , Neutrófilos/metabolismo , Receptor CB2 de Canabinoide/genética , Traumatismo por Reperfusão/genética , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aterosclerose/patologia , Agonistas de Receptores de Canabinoides/uso terapêutico , Antagonistas de Receptores de Canabinoides/uso terapêutico , Colite/tratamento farmacológico , Colite/metabolismo , Colite/patologia , Citocinas/metabolismo , Citocinas/farmacologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Inflamação , Ligantes , Camundongos , Camundongos Knockout , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Infiltração de Neutrófilos , Neutrófilos/efeitos dos fármacos , Neutrófilos/patologia , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/deficiência , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
15.
Br J Pharmacol ; 176(18): 3544-3557, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30673121

RESUMO

BACKGROUND AND PURPOSE: Alzheimer's disease (AD) is a common neurodegenerative disease characterized by a neuroinflammatory state, and to date, there is no cure and its treatment represents a large unmet clinical need. The involvement of Th17 cells in the pathogenesis of AD-related neuroinflammation has been reported in several studies. However, the role of the cytokine, IL-17 has not been well addressed. Herein, we investigate the effects of IL-17 neutralizing antibody (IL-17Ab) injected by i.c.v. or intranasal (IN) routes on amyloid-ß (Aß)-induced neuroinflammation and memory impairment in mice. EXPERIMENTAL APPROACH: Aß1-42 was injected into cerebral ventricles of adult CD1 mice. These mice received IL-17Ab via i.c.v. either at 1 h prior to Aß1-42 injection or IN 5 and 12 days after Aß1-42 injection. After 7 and 14 days of Aß1-42 administration, we evaluated olfactory, spatial and working memory and performed biochemical analyses on whole brain and specific brain areas. KEY RESULTS: Pretreatment with IL-17Ab, given, i.c.v., markedly reduced Aß1-42 -induced neurodegeneration, improved memory function, and prevented the increase of pro-inflammatory mediators in a dose-dependent manner at 7 and 14 days. Similarly, the double IN administration of IL-17Ab after Aß1-42 injection reduced neurodegeneration, memory decline, and the levels of proinflammatory mediators and cytokines. CONCLUSION AND IMPLICATIONS: These findings suggest that the IL-17Ab reduced neuroinflammation and behavioural symptoms induced by Aß. The efficacy of IL-17Ab IN administration in reducing Aß1-42 neurodegeneration points to a possible future therapeutic approach in patients with AD. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.


Assuntos
Anti-Inflamatórios/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Interleucina-17/imunologia , Transtornos da Memória/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Peptídeos beta-Amiloides , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/metabolismo , Camundongos , Doenças Neurodegenerativas/metabolismo , Fragmentos de Peptídeos
16.
Front Immunol ; 9: 2752, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555461

RESUMO

The infiltration of Th17 cells in tissues and organs during the development of many autoimmune diseases is considered a key step toward the establishment of chronic inflammation. Indeed, the localized and prolonged release of IL-17 in specific tissues has been associated with an increased severity of the inflammatory response that remains sustained over time. The cellular and molecular mechanisms behind these effects are far from being clear. In this study we investigated the effects of two repetitive administration of recombinant IL-17 into the murine air pouch to simulate a scenario where IL-17 is released over time in a pre-inflamed tissue. Consistent with our previous observations, mice receiving a single dose of IL-17 showed a transitory influx of neutrophils into the air pouch that peaked at 24 h and declined at 48 h. Conversely, mice receiving a double dose of the cytokine-one at time 0 and the second after 24 h-showed a more dramatic inflammatory response with almost 2-fold increase in the number of infiltrated leukocytes and significant higher levels of TNF-α and IL-6 in the inflammatory fluids. Further analysis of the exacerbated inflammatory response of double-injected IL-17 mice showed a unique cellular and biochemical profile with inflammatory monocytes as the second main population emigrating to the pouch and IL-16 and TREM-1 as the most upregulated cytokines found in the inflammatory fluids. Most interestingly, mice receiving a double injection of IL-1ß did not show any change in the cellular or biochemical inflammatory response compared to those receiving a single injection or just vehicle. Collectively these results shed some light on the function of IL-17 as pro-inflammatory cytokine and provide possible novel ways to target therapeutically the pathogenic effects of IL-17 in autoimmune conditions.


Assuntos
Interleucina-16/imunologia , Interleucina-17/imunologia , Monócitos/imunologia , Receptor Gatilho 1 Expresso em Células Mieloides/imunologia , Animais , Inflamação/imunologia , Inflamação/patologia , Camundongos , Monócitos/patologia , Neutrófilos/imunologia , Neutrófilos/patologia
17.
PLoS One ; 11(8): e0160685, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27509208

RESUMO

Netrin-1, acting at its cognate receptor UNC5b, has been previously demonstrated to inhibit CC chemokine-induced immune cell migration. In line with this, we found that netrin-1 was able to inhibit CCL2-induced migration of bone marrow derived macrophages (BMDMs). However, whether netrin-1 is capable of inhibiting chemotaxis to a broader range of chemoattractants remains largely unexplored. As our initial experiments demonstrated that RAW264.7 and BMDMs expressed high levels of C5a receptor 1 (C5aR1) on their surface, we aimed to determine the effect of netrin-1 exposure on monocyte/macrophage cell migration induced by C5a, a complement peptide that plays a major role in multiple inflammatory pathologies. Treatment of RAW264.7 macrophages, BMDMs and human monocytes with netrin-1 inhibited their chemotaxis towards C5a, as measured using two different real-time methods. This inhibitory effect was found to be dependent on netrin-1 receptor signalling, as an UNC5b blocking antibody was able to reverse netrin-1 inhibition of C5a induced BMDM migration. Treatment of BMDMs with netrin-1 had no effect on C5aR1 proximal signalling events, as surface C5aR1 expression, internalisation and intracellular Ca2+ release following C5aR1 ligation remained unaffected after netrin-1 exposure. We next examined receptor distal events that occur following C5aR1 activation, but found that netrin-1 was unable to inhibit C5a induced phosphorylation of ERK1/2, Akt and p38, pathways important for cellular migration. Furthermore, netrin-1 treatment had no effect on BMDM cytoskeletal rearrangement following C5a stimulation as determined by microscopy and real-time electrical impedance sensing. Taken together these data highlight that netrin-1 inhibits monocyte and macrophage cell migration, but that the mechanism behind this effect remains unresolved. Nevertheless, netrin-1 and its cognate receptors warrant further investigation as they may represent a potential avenue for the development of novel anti-inflammatory therapeutics.


Assuntos
Quimiotaxia/fisiologia , Complemento C5a/metabolismo , Macrófagos/fisiologia , Fatores de Crescimento Neural/farmacologia , Proteínas Supressoras de Tumor/farmacologia , Animais , Cálcio/metabolismo , Linhagem Celular , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiotaxia/efeitos dos fármacos , Humanos , Fatores Imunológicos/farmacologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/fisiologia , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/metabolismo , Netrina-1 , Fosfatidilinositol 3-Quinases/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo
18.
Int J Inflam ; 2015: 514686, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26078911

RESUMO

[This corrects the article DOI: 10.1155/2015/575406.].

20.
Autoimmunity ; 43(8): 672-81, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20370575

RESUMO

Transgenic mice expressing a rearranged T cell receptor (TCR)-αß prematurely at the double-negative stage develop an abnormal population of peripheral T cells that lack CD4 and CD8 expression and are hyper-reactive to anti-TCR antibody stimulation. One such example is the HY-TCR transgenic mice. These mice express a TCR transgenic specific for the HY antigen that is expressed in male but not in female mice. As a result, male mice have an abnormal population of HY(+)/CD4(-)8(-) or HY(+)/CD4(-)CD8(low) T cells that are much lower in female mice. In this study, we investigated the potential patho/physiological function of these cells in vivo using a model of delayed-type hypersensitivity (DTH) reaction: the λ-carrageenan-induced paw edema. Interestingly, while both male and female HY-TCR mice develop a classical biphasic inflammatory response to λ-carrageenan, the degree of inflammation in the former was much higher than that in the latter. This was accompanied by a selective expansion of HY(+)/CD4(-)8(-) and HY(+)/CD4(-)CD8(low) T cells in male mice and by a markedly increased production of typical DTH cytokines compared with cells from female mice. These results were specific since analysis of the inflammatory response of HY-TCR transgenic mice subjected to zymosan-induced peritonitis showed no differences between male and female mice. Together, these findings provide novel evidence for the pathological role of self-reactive CD4(-)CD8(-) T cells, previously described in several autoimmune strains and recently identified in patients suffering from autoimmune diseases such as systemic lupus erythematosus.


Assuntos
Autoimunidade/imunologia , Carragenina/imunologia , Antígeno H-Y/imunologia , Hipersensibilidade Tardia/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Linfócitos T/imunologia , Animais , Citocinas/análise , Citocinas/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Histocitoquímica , Imunofenotipagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fatores Sexuais , Zimosan/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA