Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835505

RESUMO

This study aimed to develop an in vitro three-dimensional (3D) cell culture model of oral carcinogenesis for the rapid, scalable testing of chemotherapeutic agents. Spheroids of normal (HOK) and dysplastic (DOK) human oral keratinocytes were cultured and treated with 4-nitroquinoline-1-oxide (4NQO). A 3D invasion assay using Matrigel was performed to validate the model. RNA was extracted and subjected to transcriptomic analysis to validate the model and assess carcinogen-induced changes. The VEGF inhibitors pazopanib and lenvatinib were tested in the model and were validated by a 3D invasion assay, which demonstrated that changes induced by the carcinogen in spheroids were consistent with a malignant phenotype. Further validation was obtained by bioinformatic analyses, which showed the enrichment of pathways associated with hallmarks of cancer and VEGF signalling. Overexpression of common genes associated with tobacco-induced oral squamous cell carcinoma (OSCC), such as MMP1, MMP3, MMP9, YAP1, CYP1A1, and CYP1B1, was also observed. Pazopanib and lenvatinib inhibited the invasion of transformed spheroids. In summary, we successfully established a 3D spheroid model of oral carcinogenesis for biomarker discovery and drug testing. This model is a validated preclinical model for OSCC development and would be suitable for testing a range of chemotherapeutic agents.


Assuntos
Antineoplásicos , Biomarcadores Tumorais , Carcinogênese , Técnicas de Cultura de Células em Três Dimensões , Neoplasias Bucais , Esferoides Celulares , Humanos , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinógenos/farmacologia , Neoplasias Bucais/induzido quimicamente , Neoplasias Bucais/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Ensaios de Seleção de Medicamentos Antitumorais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Células Tumorais Cultivadas , Antineoplásicos/farmacologia
2.
Cytometry A ; 97(10): 997-1006, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32713117

RESUMO

The advent of modern "omics" technologies (genomics, transcriptomics, proteomics, and metabolomics) are attributed to innovative breakthroughs in genome sequencing, bioinformatics, and analytic tools. An organism's biological structure and function is the result of the concerted action of single cells in different tissues. Single cell genomics has emerged as a ground-breaking technology that has greatly enhanced our understanding of the complexity of gene expression at a microscopic resolution and holds the potential to revolutionize the way we characterize complex cell assemblies and study their spatial organization, dynamics, clonal distribution, pathways, function, and networking. Mammalian systems have benefitted immensely from these approaches to dissect complex systems such as cancer, immunological disorders, epigenetic controls of diseases, and understanding of developmental biology. However, the applications of single-cell omics in plant research are just starting. The potential to decipher the fundamentals of developmental and functional biology of large and complex plant species at the single-cell resolution are now becoming important drivers of research. In this review, we present the status, challenges and potential of one important and most commonly used single-cell omics technique in plants, namely single cell transcriptomics. © 2020 International Society for Advancement of Cytometry.


Assuntos
Biologia Computacional , Desenvolvimento Vegetal , Transcriptoma , Animais , Genômica , Metabolômica
3.
Theor Appl Genet ; 133(10): 2975-2987, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32683474

RESUMO

The transformation of wild plants into domesticated crops usually modifies a common set of characters referred to as 'domestication syndrome' traits such as the loss of pod shattering/seed dehiscence, loss of seed dormancy, reduced anti-nutritional compounds and changes in growth habit, phenology, flower and seed colour. Understanding the genetic control of domestication syndrome traits facilitates the efficient transfer of useful traits from wild progenitors into crops through crossing and selection. Domesticated forms of yellow lupin (Lupinus luteus L.) possess many domestication syndrome traits, while their genetic control remains a mystery. This study aimed to reveal the genetic control of yellow lupin domestication traits. This involved phenotypic characterisation of those traits, defining the genomic regions controlling domestication traits on a linkage map and performing a comparative genomic analysis of yellow lupin with its better-understood relatives, narrow-leafed lupin (L. angustifolius L.) and white lupin (L. albus L.). We phenotyped an F9 recombinant inbred line (RIL) population of a wide cross between Wodjil (domesticated) × P28213 (wild). Vernalisation responsiveness, alkaloid content, flower and seed colour in yellow lupin were each found to be controlled by single loci on linkage groups YL-21, YL-06, YL-03 and YL-38, respectively. Aligning the genomes of yellow with narrow-leafed lupin and white lupin revealed well-conserved synteny between these sister species (76% and 71%, respectively). This genomic comparison revealed that one of the key domestication traits, vernalisation-responsive flowering, mapped to a region of conserved synteny with the vernalisation-responsive flowering time Ku locus of narrow-leafed lupin, which has previously been shown to be controlled by an FT homologue. In contrast, the loci controlling alkaloid content were each found at non-syntenic regions among the three species. This provides a first glimpse into the molecular control of flowering time in yellow lupin and demonstrates both the power and the limitation of synteny as a tool for gene discovery in lupins.


Assuntos
Mapeamento Cromossômico , Domesticação , Genoma de Planta , Lupinus/genética , Cor , Flores , Genótipo , Lupinus/classificação , Fenótipo , Sintenia
4.
BMC Genet ; 20(1): 68, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31412771

RESUMO

BACKGROUND: Yellow lupin (Lupinus luteus L.) is a promising grain legume for productive and sustainable crop rotations. It has the advantages of high tolerance to soil acidity and excellent seed quality, but its current yield potential is poor, especially in low rainfall environments. Key adaptation traits such as phenology and enhanced stress tolerance are often complex and controlled by several genes. Genomic-enabled technologies may help to improve our basic understanding of these traits and to provide selective markers in breeding. However, in yellow lupin there are very limited genomic resources to support research and no published information is available on the genetic control of adaptation traits. RESULTS: We aimed to address these deficiencies by developing the first linkage map for yellow lupin and conducting quantitative trait locus (QTL) analysis of yield under well-watered (WW) and water-deficit (WT) conditions. Two next-generation sequencing marker approaches - genotyping-by-sequencing (GBS) and Diversity Array Technology (DArT) sequencing - were employed to genotype a recombinant inbred line (RIL) population developed from a bi-parental cross between wild and domesticated parents. A total of 2,458 filtered single nucleotide polymorphism (SNP) and presence / absence variation (PAV) markers were used to develop a genetic map comprising 40 linkage groups, the first reported for this species. A number of significant QTLs controlling total biomass and 100-seed weight under two water (WW and WD) regimes were found on linkage groups YL-03, YL-09 and YL-26 that together explained 9 and 28% of total phenotypic variability. QTLs associated with length of the reproductive phase and time to flower were found on YL-01, YL-21, YL-35 and YL-40 that together explained a total of 12 and 44% of total phenotypic variation. CONCLUSION: These genomic resources and the QTL information offer significant potential for use in marker-assisted selection in yellow lupin.


Assuntos
Mapeamento Cromossômico , Produtos Agrícolas/genética , Grão Comestível/genética , Lupinus/genética , Locos de Características Quantitativas , Característica Quantitativa Herdável , Análise de Variância , Ligação Genética , Marcadores Genéticos , Genótipo , Endogamia , Fenótipo , Melhoramento Vegetal
5.
Front Immunol ; 14: 1275937, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920467

RESUMO

Background: Human perinatal life is characterized by a period of extraordinary change during which newborns encounter abundant environmental stimuli and exposure to potential pathogens. To meet such challenges, the neonatal immune system is equipped with unique functional characteristics that adapt to changing conditions as development progresses across the early years of life, but the molecular characteristics of such adaptations remain poorly understood. The application of single cell genomics to birth cohorts provides an opportunity to investigate changes in gene expression programs elicited downstream of innate immune activation across early life at unprecedented resolution. Methods: In this study, we performed single cell RNA-sequencing of mononuclear cells collected from matched birth cord blood and 5-year peripheral blood samples following stimulation (18hrs) with two well-characterized innate stimuli; lipopolysaccharide (LPS) and Polyinosinic:polycytidylic acid (Poly(I:C)). Results: We found that the transcriptional response to LPS was constrained at birth and predominantly partitioned into classical proinflammatory gene upregulation primarily by monocytes and Interferon (IFN)-signaling gene upregulation by lymphocytes. Moreover, these responses featured substantial cell-to-cell communication which appeared markedly strengthened between birth and 5 years. In contrast, stimulation with Poly(I:C) induced a robust IFN-signalling response across all cell types identified at birth and 5 years. Analysis of gene regulatory networks revealed IRF1 and STAT1 were key drivers of the LPS-induced IFN-signaling response in lymphocytes with a potential developmental role for IRF7 regulation. Conclusion: Additionally, we observed distinct activation trajectory endpoints for monocytes derived from LPS-treated cord and 5-year blood, which was not apparent among Poly(I:C)-induced monocytes. Taken together, our findings provide new insight into the gene regulatory landscape of immune cell function between birth and 5 years and point to regulatory mechanisms relevant to future investigation of infection susceptibility in early life.


Assuntos
Lipopolissacarídeos , Transcriptoma , Recém-Nascido , Humanos , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Monócitos , Transdução de Sinais , Regulação da Expressão Gênica , Poli I-C/farmacologia , Poli I-C/metabolismo
6.
Hortic Res ; 9: uhac180, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338848

RESUMO

Ongoing climate change has considerably reduced the seasonal window for crop vernalization, concurrently expanding cultivation area into northern latitudes with long-day photoperiod. To address these changes, cool season legume breeders need to understand molecular control of vernalization and photoperiod. A key floral transition gene integrating signals from these pathways is the Flowering locus T (FT). Here, a recently domesticated grain legume, yellow lupin (Lupinus luteus L.), was explored for potential involvement of FT homologues in abolition of vernalization and photoperiod requirements. Two FTa (LlutFTa1a and LlutFTa1b) and FTc (LlutFTc1 and LlutFTc2) homologues were identified and sequenced for two contrasting parents of a reference recombinant inbred line (RIL) population, an early-flowering cultivar Wodjil and a late-flowering wild-type P28213. Large deletions were detected in the 5' promoter regions of three FT homologues. Quantitative trait loci were identified for flowering time and vernalization response in the RIL population and in a diverse panel of wild and domesticated accessions. A 2227 bp deletion found in the LlutFTc1 promoter was linked with early phenology and vernalization independence, whereas LlutFTa1a and LlutFTc2 indels with photoperiod responsiveness. Comparative mapping highlighted convergence of FTc1 indel evolution in two Old World lupin species, addressing both artificial selection during domestication and natural adaptation to short season environmental conditions. We concluded that rapid flowering in yellow lupin is associated with the de-repression of the LlutFTc1 homologue from the juvenile phase, putatively due to the elimination of all binding sites in the promoter region for the AGAMOUS-like 15 transcription factor.

7.
Sci Rep ; 11(1): 14101, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238961

RESUMO

T-cell activation induces context-specific gene expression programs that promote energy generation and biosynthesis, progression through the cell cycle and ultimately cell differentiation. The aim of this study was to apply the omni ATAC-seq method to characterize the landscape of chromatin changes induced by T-cell activation in mature naïve CD4+ T-cells. Using a well-established ex vivo protocol of canonical T-cell receptor signaling, we generated genome-wide chromatin maps of naïve T-cells from pediatric donors in quiescent or recently activated states. We identified thousands of individual chromatin accessibility peaks that are associated with T-cell activation, the majority of which were annotated intronic and intergenic enhancer regions. A core set of 3268 gene promoters underwent chromatin remodeling and concomitant changes in gene expression in response to activation, and were enriched in multiple pathways controlling cell cycle regulation, metabolism, inflammatory response genes and cell survival. Leukemia inhibitory factor (LIF) was among those factors that gained the highest accessibility and expression, in addition to IL2-STAT5 dependent chromatin remodeling in the T-cell activation response. Using publicly available data we found the chromatin response was far more dynamic at 24-h compared with 72-h post-activation. In total 546 associations were reproduced at both time-points with similar strength of evidence and directionality of effect. At the pathways level, the IL2-STAT5, KRAS signalling and UV response pathways were replicable at both time-points, although differentially modulated from 24 to 72 h post-activation.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Cromatina/metabolismo , Ativação Linfocitária/imunologia , Pré-Escolar , Feminino , Regulação da Expressão Gênica , Humanos , Lactente , Masculino , Reprodutibilidade dos Testes , Transcrição Gênica
8.
Mol Biotechnol ; 50(2): 129-36, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21688039

RESUMO

A Rice chitinase-3 under enhance version of CaMV 35S was introduced into peanut (Arachis hypogaea L.) through Agrobacterium mediation. Agrobacterium tumefaciens strain LB4404 was used harboring the binary vector (pB1333-EN4-RCG3) containing the chitinase (chit) and hygromycin resistance (hpt) gene as selectable marker. Putative transgenic shoots were regenerated and grown on MS medium supplemented with 5 mg/l BAP, 1 mg/l kinetin, and 30 mg/l hygromycin. Elongated shoots were examined for the presence of the integrated rice chitinase gene along with hygromycin gene as selectable. The integration pattern of transgene in the nuclear genome of the putative transformed plants (T(0)) was confirmed through Southern hybridization analysis of the genomic DNA. Survival rate of the in vitro regenerated plantlets was over 60% while healthy putatively transgenic (T(0)) plants with over 42% transformation frequency were produced through Agrobacterium mediated gene transfer of the rice chitinase gene and all the plants flowered and set seed normally. T1 plants were tested for resistance against Cercospora arachidicola by infection with the microspores. Transgenic strains exhibited a higher resistance than the control (non-transgenic plants). chitinase gene expression in highly resistant transgenic strains was compared to that of a susceptible control. A good correlation was observed between chitinase activity and fungal pathogen resistance.


Assuntos
Arachis/genética , Arachis/microbiologia , Ascomicetos/patogenicidade , Quitinases/genética , Oryza/genética , Plantas Geneticamente Modificadas/microbiologia , Agrobacterium tumefaciens/genética , Quitinases/metabolismo , Cinamatos/farmacologia , Resistência à Doença/genética , Resistência Microbiana a Medicamentos/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Transferência de Genes , Higromicina B/análogos & derivados , Higromicina B/farmacologia , Oryza/enzimologia , Doenças das Plantas/microbiologia
9.
Mol Biotechnol ; 49(3): 250-6, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21455815

RESUMO

Salinity and drought are main threat to agriculture productivity, to avoid further losses it is necessary to improve the genetic material of crops against these stresses In this present study, AtNHX1, a vacuolar type Na(+)/H(+) antiporter gene driven by 35S promoter was introduced into groundnut using Agrobacterium tumefaciens transformation system. The stable integration of the AtNHX1 gene was confirmed by polymerase chain reaction (PCR) and southern blot analysis. It was found that transgenic plants having AtNHX1 gene are more resistant to high concentration of salt and water deprivation than the wild type plants. Salt and proline level in the leaves of the transgenic plants were also much higher than that of wild type plants. The results showed that overexpression of AtNHX1 gene not only improved salt tolerance but also drought tolerance in transgenic groundnut. Our results suggest that these plants could be cultivated in salt and drought-affected soils.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arachis/genética , Proteínas de Transporte de Cátions/metabolismo , Secas , Tolerância ao Sal/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Hidroponia , Fenótipo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Plasmídeos/genética , Potássio/metabolismo , Prolina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sódio/metabolismo , Estresse Fisiológico/genética , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA