Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(12): 6476-6483, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152114

RESUMO

We tested the hypothesis that underrepresented students in active-learning classrooms experience narrower achievement gaps than underrepresented students in traditional lecturing classrooms, averaged across all science, technology, engineering, and mathematics (STEM) fields and courses. We conducted a comprehensive search for both published and unpublished studies that compared the performance of underrepresented students to their overrepresented classmates in active-learning and traditional-lecturing treatments. This search resulted in data on student examination scores from 15 studies (9,238 total students) and data on student failure rates from 26 studies (44,606 total students). Bayesian regression analyses showed that on average, active learning reduced achievement gaps in examination scores by 33% and narrowed gaps in passing rates by 45%. The reported proportion of time that students spend on in-class activities was important, as only classes that implemented high-intensity active learning narrowed achievement gaps. Sensitivity analyses showed that the conclusions are robust to sampling bias and other issues. To explain the extensive variation in efficacy observed among studies, we propose the heads-and-hearts hypothesis, which holds that meaningful reductions in achievement gaps only occur when course designs combine deliberate practice with inclusive teaching. Our results support calls to replace traditional lecturing with evidence-based, active-learning course designs across the STEM disciplines and suggest that innovations in instructional strategies can increase equity in higher education.


Assuntos
Logro , Grupos Minoritários/educação , Aprendizagem Baseada em Problemas , Avaliação Educacional , Engenharia/educação , Humanos , Matemática/educação , Ciência/educação , Estudantes , Tecnologia/educação , Estados Unidos , Universidades
2.
PLoS Genet ; 15(6): e1008242, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31246952

RESUMO

Low oxygen conditions (hypoxia) can impair essential physiological processes and cause cellular damage and death. We have shown that specific hypoxic conditions disrupt protein homeostasis in C. elegans, leading to protein aggregation and proteotoxicity. Here, we show that nutritional cues regulate this effect of hypoxia on proteostasis. Animals fasted prior to hypoxic exposure develop dramatically fewer polyglutamine protein aggregates compared to their fed counterparts, indicating that the effect of hypoxia is abrogated. Fasting also reduced the hypoxia-induced exaggeration of proteostasis defects in animals that express Aß1-42 and in animals with a temperature-sensitive mutation in dyn-1, suggesting that this effect was not specific to polyglutamine proteins. Our data also demonstrate that the nutritional environment experienced at the onset of hypoxia dictates at least some aspects of the physiological response to hypoxia. We further demonstrate that the insulin/IGF-like signaling pathway plays a role in mediating the protective effects of fasting in hypoxia. Animals with mutations in daf-2, the C. elegans insulin-like receptor, display wild-type levels of hypoxia-induced protein aggregation upon exposure to hypoxia when fed, but are not protected by fasting. DAF-2 acts independently of the FOXO transcription factor, DAF-16, to mediate the protective effects of fasting. These results suggest a non-canonical role for the insulin/IGF-like signaling pathway in coordinating the effects of hypoxia and nutritional state on proteostasis.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Fatores de Transcrição Forkhead/genética , Fator de Crescimento Insulin-Like I/genética , Insulina/genética , Receptor de Insulina/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Jejum/metabolismo , Regulação da Expressão Gênica/genética , Hipóxia/genética , Hipóxia/metabolismo , Mutação/genética , Peptídeos/genética , Transdução de Sinais/genética
3.
Front Genet ; 3: 257, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23233860

RESUMO

The ability to sense and respond to stressful conditions is essential to maintain organismal homeostasis. It has long been recognized that stress response factors that improve survival in changing conditions can also influence longevity. In this review, we discuss different strategies used by animals in response to decreased O(2) (hypoxia) to maintain O(2) homeostasis, and consider interactions between hypoxia responses, nutritional status, and H(2)S signaling. O(2) is an essential environmental nutrient for almost all metazoans as it plays a fundamental role in development and cellular metabolism. However, the physiological response(s) to hypoxia depend greatly on the amount of O(2) available. Animals must sense declining O(2) availability to coordinate fundamental metabolic and signaling pathways. It is not surprising that factors involved in the response to hypoxia are also involved in responding to other key environmental signals, particularly food availability. Recent studies in mammals have also shown that the small gaseous signaling molecule hydrogen sulfide (H(2)S) protects against cellular damage and death in hypoxia. These results suggest that H(2)S signaling also integrates with hypoxia response(s). Many of the signaling pathways that mediate the effects of hypoxia, food deprivation, and H(2)S signaling have also been implicated in the control of lifespan. Understanding how these pathways are coordinated therefore has the potential to reveal new cellular and organismal homeostatic mechanisms that contribute to longevity assurance in animals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA