Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143221

RESUMO

The genomes of living lungfishes can inform on the molecular-developmental basis of the Devonian sarcopterygian fish-tetrapod transition. We de novo sequenced the genomes of the African (Protopterus annectens) and South American lungfishes (Lepidosiren paradoxa). The Lepidosiren genome (about 91 Gb, roughly 30 times the human genome) is the largest animal genome sequenced so far and more than twice the size of the Australian (Neoceratodus forsteri)1 and African2 lungfishes owing to enlarged intergenic regions and introns with high repeat content (about 90%). All lungfish genomes continue to expand as some transposable elements (TEs) are still active today. In particular, Lepidosiren's genome grew extremely fast during the past 100 million years (Myr), adding the equivalent of one human genome every 10 Myr. This massive genome expansion seems to be related to a reduction of PIWI-interacting RNAs and C2H2 zinc-finger and Krüppel-associated box (KRAB)-domain protein genes that suppress TE expansions. Although TE abundance facilitates chromosomal rearrangements, lungfish chromosomes still conservatively reflect the ur-tetrapod karyotype. Neoceratodus' limb-like fins still resemble those of their extinct relatives and remained phenotypically static for about 100 Myr. We show that the secondary loss of limb-like appendages in the Lepidosiren-Protopterus ancestor was probably due to loss of sonic hedgehog limb-specific enhancers.

2.
Nature ; 590(7845): 284-289, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33461212

RESUMO

Lungfishes belong to lobe-fined fish (Sarcopterygii) that, in the Devonian period, 'conquered' the land and ultimately gave rise to all land vertebrates, including humans1-3. Here we determine the chromosome-quality genome of the Australian lungfish (Neoceratodus forsteri), which is known to have the largest genome of any animal. The vast size of this genome, which is about 14× larger than that of humans, is attributable mostly to huge intergenic regions and introns with high repeat content (around 90%), the components of which resemble those of tetrapods (comprising mainly long interspersed nuclear elements) more than they do those of ray-finned fish. The lungfish genome continues to expand independently (its transposable elements are still active), through mechanisms different to those of the enormous genomes of salamanders. The 17 fully assembled lungfish macrochromosomes maintain synteny to other vertebrate chromosomes, and all microchromosomes maintain conserved ancient homology with the ancestral vertebrate karyotype. Our phylogenomic analyses confirm previous reports that lungfish occupy a key evolutionary position as the closest living relatives to tetrapods4,5, underscoring the importance of lungfish for understanding innovations associated with terrestrialization. Lungfish preadaptations to living on land include the gain of limb-like expression in developmental genes such as hoxc13 and sall1 in their lobed fins. Increased rates of evolution and the duplication of genes associated with obligate air-breathing, such as lung surfactants and the expansion of odorant receptor gene families (which encode proteins involved in detecting airborne odours), contribute to the tetrapod-like biology of lungfishes. These findings advance our understanding of this major transition during vertebrate evolution.


Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Peixes/genética , Marcha/genética , Genoma/genética , Pulmão , Vertebrados/genética , Ar , Nadadeiras de Animais/anatomia & histologia , Animais , Teorema de Bayes , Cromossomos/genética , Extremidades/anatomia & histologia , Feminino , Peixes/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox/genética , Genômica , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Pulmão/anatomia & histologia , Pulmão/fisiologia , Camundongos , Anotação de Sequência Molecular , Filogenia , Respiração , Olfato/fisiologia , Sintenia , Vertebrados/fisiologia , Órgão Vomeronasal/anatomia & histologia
3.
J Cell Sci ; 137(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39239891

RESUMO

Land plants are astounding processors of information; due to their sessile nature, they adjust the molecular programs that define their development and physiology in accordance with the environment in which they dwell. Transduction of the external input to the respective internal programs hinges to a large degree on molecular signaling cascades, many of which have deep evolutionary origins in the ancestors of land plants and its closest relatives, streptophyte algae. In this Review, we discuss the evolutionary history of the defining factors of streptophyte signaling cascades, circuitries that not only operate in extant land plants and streptophyte algae, but that also likely operated in their extinct algal ancestors hundreds of millions of years ago. We hope this Review offers a starting point for future studies on the evolutionary mechanisms contributing to the current diversity and complexity of plant signaling pathways, with an emphasis on recognizing potential biases.


Assuntos
Plantas , Transdução de Sinais , Plantas/metabolismo , Plantas/genética , Evolução Molecular , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
4.
Semin Cell Dev Biol ; 134: 37-58, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-35292191

RESUMO

The monophyletic group of embryophytes (land plants) stands out among photosynthetic eukaryotes: they are the sole constituents of the macroscopic flora on land. In their entirety, embryophytes account for the majority of the biomass on land and constitute an astounding biodiversity. What allowed for the massive radiation of this particular lineage? One of the defining features of all land plants is the production of an array of specialized metabolites. The compounds that the specialized metabolic pathways of embryophytes produce have diverse functions, ranging from superabundant structural polymers and compounds that ward off abiotic and biotic challenges, to signaling molecules whose abundance is measured at the nanomolar scale. These specialized metabolites govern the growth, development, and physiology of land plants-including their response to the environment. Hence, specialized metabolites define the biology of land plants as we know it. And they were likely a foundation for their success. It is thus intriguing to find that the closest algal relatives of land plants, freshwater organisms from the grade of streptophyte algae, possess homologs for key enzymes of specialized metabolic pathways known from land plants. Indeed, some studies suggest that signature metabolites emerging from these pathways can be found in streptophyte algae. Here we synthesize the current understanding of which routes of the specialized metabolism of embryophytes can be traced to a time before plants had conquered land.


Assuntos
Evolução Biológica , Embriófitas , Plantas , Filogenia
5.
Proc Biol Sci ; 291(2027): 20240985, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39081174

RESUMO

Land plants (embryophytes) came about in a momentous evolutionary singularity: plant terrestrialization. This event marks not only the conquest of land by plants but also the massive radiation of embryophytes into a diverse array of novel forms and functions. The unique suite of traits present in the earliest land plants is thought to have been ushered in by a burst in genomic novelty. Here, we asked the question of how these bursts were possible. For this, we explored: (i) the initial emergence and (ii) the reshuffling of domains to give rise to hallmark environmental response genes of land plants. We pinpoint that a quarter of the embryophytic genes for stress physiology are specific to the lineage, yet a significant portion of this novelty arises not de novo but from reshuffling and recombining of pre-existing domains. Our data suggest that novel combinations of old genomic substrate shaped the plant terrestrialization toolkit, including hallmark processes in signalling, biotic interactions and specialized metabolism.


Assuntos
Evolução Biológica , Embriófitas , Domínios Proteicos , Embriófitas/genética
6.
Mol Phylogenet Evol ; 200: 108165, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39117294

RESUMO

Green algae usually assigned to the genus Oophila are known to colonize egg capsules of amphibian egg masses across the Nearctic and Palearctic regions. We study the phylogenetic relationships of these algae using a phylotranscriptomic data set of 76 protein-coding single-copy nuclear genes. Our data set includes novel RNAseq data for six amphibian-associated and five free-living green algae, and draft genomes of two of the latter. Within the Oophila clade (nested within Moewusinia), we find samples from two European frogs (Rana dalmatina and R. temporaria) closely related to those of the North American frog R. aurora (Oophila subclade III). An isolate from the North American R. sylvatica (subclade IV) appears to be sister to the Japanese isolate from the salamander Hynobius nigrescens (subclade J1), and subclade I algae from Ambystoma maculatum are sister to all other lineages in the Oophila clade. Two free-living algae (Chlamydomonas nasuta and Cd. pseudogloeogama) are nested within the Oophila clade, and a strain of the type species of Chlorococcum (Cc. infusionum) is related to this assemblage. Our phylotranscriptomic tree suggests that recognition of different species within the Oophila clade ("clade B" of earlier studies) is warranted, and calls for a comprehensive taxonomic revision of Moewusinia.


Assuntos
Filogenia , Animais , Óvulo , Transcriptoma , Clorófitas/genética , Clorófitas/classificação , Ranidae/genética , Ranidae/classificação , Anfíbios/genética , Anfíbios/classificação
7.
Nat Chem Biol ; 18(4): 368-375, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35165445

RESUMO

We recently reported the discovery of a lysine-cysteine redox switch in proteins with a covalent nitrogen-oxygen-sulfur (NOS) bridge. Here, a systematic survey of the whole protein structure database discloses that NOS bridges are ubiquitous redox switches in proteins of all domains of life and are found in diverse structural motifs and chemical variants. In several instances, lysines are observed in simultaneous linkage with two cysteines, forming a sulfur-oxygen-nitrogen-oxygen-sulfur (SONOS) bridge with a trivalent nitrogen, which constitutes an unusual native branching cross-link. In many proteins, the NOS switch contains a functionally essential lysine with direct roles in enzyme catalysis or binding of substrates, DNA or effectors, linking lysine chemistry and redox biology as a regulatory principle. NOS/SONOS switches are frequently found in proteins from human and plant pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and also in many human proteins with established roles in gene expression, redox signaling and homeostasis in physiological and pathophysiological conditions.


Assuntos
COVID-19 , Cisteína , Cisteína/química , Humanos , Lisina/metabolismo , Oxirredução , SARS-CoV-2
8.
Ann Bot ; 134(3): 385-400, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-38832756

RESUMO

The Streptophyta emerged about a billion years ago. Nowadays, this branch of the green lineage is most famous for one of its clades, the land plants (Embryophyta). Although Embryophyta make up the major share of species numbers in Streptophyta, there is a diversity of probably >5000 species of streptophyte algae that form a paraphyletic grade next to land plants. Here, we focus on the deep divergences that gave rise to the diversity of streptophytes, hence particularly on the streptophyte algae. Phylogenomic efforts have not only clarified the position of streptophyte algae relative to land plants, but recent efforts have also begun to unravel the relationships and major radiations within streptophyte algal diversity. We illustrate how new phylogenomic perspectives have changed our view on the evolutionary emergence of key traits, such as intricate signalling networks that are intertwined with multicellular growth and the chemodiverse hotbed from which they emerged. These traits are key for the biology of land plants but were bequeathed from their algal progenitors.


Assuntos
Evolução Biológica , Filogenia , Estreptófitas , Estreptófitas/genética , Estreptófitas/fisiologia
9.
Physiol Plant ; 176(2): e14244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38480467

RESUMO

Land plants have diversified enzyme families. One of the most prominent is the cytochrome P450 (CYP or CYP450) family. With over 443,000 CYP proteins sequenced across the tree of life, CYPs are ubiquitous in archaea, bacteria, and eukaryotes. Here, we focused on land plants and algae to study the role of CYP diversification. CYPs, acting as monooxygenases, catalyze hydroxylation reactions crucial for specialized plant metabolic pathways, including detoxification and phytohormone production; the CYPome consists of one enormous superfamily that is divided into clans and families. Their evolutionary history speaks of high substrate promiscuity; radiation and functional diversification have yielded numerous CYP families. To understand the evolutionary relationships within the CYPs, we employed sequence similarity network analyses. We recovered distinct clusters representing different CYP families, reflecting their diversified sequences that we link to the prediction of functionalities. Hierarchical clustering and phylogenetic analysis further elucidated relationships between CYP clans, uncovering their shared deep evolutionary history. We explored the distribution and diversification of CYP subfamilies across plant and algal lineages, uncovering novel candidates and providing insights into the evolution of these enzyme families. This identified unexpected relationships between CYP families, such as the link between CYP82 and CYP74, shedding light on their roles in plant defense signaling pathways. Our approach provides a methodology that brings insights into the emergence of new functions within the CYP450 family, contributing to the evolutionary history of plants and algae. These insights can be further validated and implemented via experimental setups under various external conditions.


Assuntos
Sistema Enzimático do Citocromo P-450 , Plantas , Archaea/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Filogenia , Plantas/genética , Plantas/metabolismo
10.
Plant J ; 112(2): 518-534, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36050843

RESUMO

There are numerous examples of plant organs or developmental stages that are desiccation-tolerant and can withstand extended periods of severe water loss. One prime example are seeds and pollen of many spermatophytes. However, in some plants, also vegetative organs can be desiccation-tolerant. One example are the tubers of yellow nutsedge (Cyperus esculentus), which also store large amounts of lipids similar to seeds. Interestingly, the closest known relative, purple nutsedge (Cyperus rotundus), generates tubers that do not accumulate oil and are not desiccation-tolerant. We generated nanoLC-MS/MS-based proteomes of yellow nutsedge in five replicates of four stages of tuber development and compared them to the proteomes of roots and leaves, yielding 2257 distinct protein groups. Our data reveal a striking upregulation of hallmark proteins of seeds in the tubers. A deeper comparison to the tuber proteome of the close relative purple nutsedge (C. rotundus) and a previously published proteome of Arabidopsis seeds and seedlings indicates that indeed a seed-like proteome was found in yellow but not purple nutsedge. This was further supported by an analysis of the proteome of a lipid droplet-enriched fraction of yellow nutsedge, which also displayed seed-like characteristics. One reason for the differences between the two nutsedge species might be the expression of certain transcription factors homologous to ABSCISIC ACID INSENSITIVE3, WRINKLED1, and LEAFY COTYLEDON1 that drive gene expression in Arabidopsis seed embryos.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cyperus , Proteoma/metabolismo , Arabidopsis/genética , Ácido Abscísico/metabolismo , Espectrometria de Massas em Tandem , Sementes/genética , Cyperus/genética , Cyperus/metabolismo , Fatores de Transcrição/metabolismo , Água/metabolismo , Lipídeos , Proteínas de Arabidopsis/metabolismo
11.
Syst Biol ; 71(6): 1271-1280, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-35766870

RESUMO

Gastropods have survived several mass extinctions during their evolutionary history resulting in extraordinary diversity in morphology, ecology, and developmental modes, which complicate the reconstruction of a robust phylogeny. Currently, gastropods are divided into six subclasses: Caenogastropoda, Heterobranchia, Neomphaliones, Neritimorpha, Patellogastropoda, and Vetigastropoda. Phylogenetic relationships among these taxa historically lack consensus, despite numerous efforts using morphological and molecular information. We generated sequence data for transcriptomes derived from 12 taxa belonging to clades with little or no prior representation in previous studies in order to infer the deeper cladogenetic events within Gastropoda and, for the first time, infer the position of the deep-sea Neomphaliones using a phylogenomic approach. We explored the impact of missing data, homoplasy, and compositional heterogeneity on the inferred phylogenetic hypotheses. We recovered a highly supported backbone for gastropod relationships that is congruent with morphological and mitogenomic evidence, in which Patellogastropoda, true limpets, are the sister lineage to all other gastropods (Orthogastropoda) which are divided into two main clades 1) Vetigastropoda $s.l.$ (including Pleurotomariida $+$ Neomphaliones) and 2) Neritimorpha $+$ (Caenogastropoda $+$ Heterobranchia). As such, our results support the recognition of five subclasses (or infraclasses) in Gastropoda: Patellogastropoda, Vetigastropoda, Neritimorpha, Caenogastropoda, and Heterobranchia. [Compositional heterogeneity; fast-evolving; long-branch attraction; missing data; Mollusca; phylogenetics; systematic error.].


Assuntos
Gastrópodes , Animais , Evolução Biológica , Gastrópodes/genética , Moluscos/genética , Filogenia
12.
Biol Lett ; 19(12): 20230398, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087939

RESUMO

The phylum Rozellomycota has been proposed for a group of early-branching holomycotan lineages representing obligate parasites and hyperparasites of zoosporic fungi, oomycotes or phytoplankton. Given their predominantly intracellular lifestyle, rozellids are typically known from environmental ribosomal DNA data, except for the well-studied Rozella species. To date, the phylogenetic relationship between rozellids and microsporidians (Microsporidia) is not fully understood and most reliable hypotheses are based on phylogenomic analyses that incorporate the only publicly available rozellid genome of Rozella allomycis. Here, we provide genomic data of three new rozellid lineages obtained by single-cell sequencing from environmental samples and show with a phylogenomic approach that rozellids form a monophyletic group that is sister to microsporidians, corroborating the previously proposed phylum Rozellomycota. Whereas no mitochondrial genes coding for the respiratory Complex I could be found, we discovered a gene coding for a nucleotide phosphate transporter in one of the three draft genomes. The scattered absence of Complex I genes and scattered presence of nucleotide transporter genes across diverse microsporidian and rozellid lineages suggest that these adaptations to a parasitic lifestyle, which reduce the parasite's capability to synthesize ATP but enables it to steal ATP from its host, evolved independently in microsporidians and rozellids.


Assuntos
Microsporídios , Microsporídios/genética , Filogenia , Genoma Fúngico , Genômica , Nucleotídeos , Trifosfato de Adenosina
13.
Physiol Plant ; 175(6): e14056, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148198

RESUMO

Water scarcity can be considered a major stressor on land, with desiccation being its most extreme form. Land plants have found two different solutions to this challenge: avoidance and tolerance. The closest algal relatives to land plants, the Zygnematophyceae, use the latter, and how this is realized is of great interest for our understanding of the conquest of land. Here, we worked with two representatives of the Zygnematophyceae, Zygnema circumcarinatum SAG 698-1b and Mesotaenium endlicherianum SAG 12.97, who differ in habitats and drought resilience. We challenged both algal species with severe desiccation in a laboratory setup until photosynthesis ceased, followed by a recovery period. We assessed their morphological, photophysiological, and transcriptomic responses. Our data pinpoint global differential gene expression patterns that speak of conserved responses, from calcium-mediated signaling to the adjustment of plastid biology, cell envelopes, and amino acid pathways, between Zygnematophyceae and land plants despite their strong ecophysiological divergence. The main difference between the two species appears to rest in a readjustment of the photobiology of Zygnema, while Mesotaenium experiences stress beyond a tipping point.


Assuntos
Embriófitas , Estreptófitas , Dessecação , Estreptófitas/genética , Estreptófitas/metabolismo , Plantas , Fotossíntese
14.
Plant J ; 107(4): 975-1002, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34165823

RESUMO

Land plants constantly respond to fluctuations in their environment. Part of their response is the production of a diverse repertoire of specialized metabolites. One of the foremost sources for metabolites relevant to environmental responses is the phenylpropanoid pathway, which was long thought to be a land-plant-specific adaptation shaped by selective forces in the terrestrial habitat. Recent data have, however, revealed that streptophyte algae, the algal relatives of land plants, have candidates for the genetic toolkit for phenylpropanoid biosynthesis and produce phenylpropanoid-derived metabolites. Using phylogenetic and sequence analyses, we here show that the enzyme families that orchestrate pivotal steps in phenylpropanoid biosynthesis have independently undergone pronounced radiations and divergence in multiple lineages of major groups of land plants; sister to many of these radiated gene families are streptophyte algal candidates for these enzymes. These radiations suggest a high evolutionary versatility in the enzyme families involved in the phenylpropanoid-derived metabolism across embryophytes. We suggest that this versatility likely translates into functional divergence, and may explain the key to one of the defining traits of embryophytes: a rich specialized metabolism.


Assuntos
Enzimas/metabolismo , Fenilpropionatos/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Enzimas/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Família Multigênica , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Proteínas de Plantas/genética , Metabolismo Secundário , Estreptófitas/genética , Estreptófitas/metabolismo
15.
Mol Ecol ; 31(8): 2384-2399, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35191134

RESUMO

The process of species formation is characterized by the accumulation of multiple reproductive barriers. The evolution of hybrid male sterility, or Haldane's rule, typically characterizes later stages of species formation, when reproductive isolation is strongest. Yet, understanding how quickly reproductive barriers evolve and their consequences for maintaining genetic boundaries between emerging species remains a challenging task because it requires studying taxa that hybridize in nature. Here, we address these questions using the meadow grasshopper Pseudochorthippus parallelus, where populations that show multiple reproductive barriers, including hybrid male sterility, hybridize in two natural hybrid zones. Using mitochondrial data, we infer that such populations diverged some 100,000 years ago, at the beginning of the last glacial cycle in Europe. Nuclear data show that contractions at multiple glacial refugia, and post-glacial expansions have facilitated genetic differentiation between lineages that today interact in hybrid zones. We find extensive introgression throughout the sampled species range, irrespective of the current strength of reproductive isolation. Populations exhibiting hybrid male sterility in two hybrid zones show repeatable patterns of genomic differentiation, consistent with shared genomic constraints affecting ancestral divergence or with the role of those regions in reproductive isolation. Together, our results suggest that reproductive barriers that characterize late stages of species formation can evolve relatively quickly, particularly when associated with strong demographic changes. Moreover, we show that such barriers persist in the face of extensive gene flow, allowing future studies to identify associated genomic regions.


Assuntos
Gafanhotos , Infertilidade Masculina , Animais , Fluxo Gênico , Especiação Genética , Gafanhotos/genética , Hibridização Genética , Masculino , Isolamento Reprodutivo
16.
Syst Biol ; 71(1): 105-120, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33988690

RESUMO

The origin of plastids was a major evolutionary event that paved the way for an astonishing diversification of photosynthetic eukaryotes. Plastids originated by endosymbiosis between a heterotrophic eukaryotic host and cyanobacteria, presumably in a common ancestor of the primary photosynthetic eukaryotes (Archaeplastida). A single origin of primary plastids is well supported by plastid evidence but not by nuclear phylogenomic analyses, which have consistently failed to recover the monophyly of Archaeplastida hosts. Importantly, plastid monophyly and nonmonophyletic hosts could be explained under scenarios of independent or serial eukaryote-to-eukaryote endosymbioses. Here, we assessed the strength of the signal for the monophyly of Archaeplastida hosts in four available phylogenomic data sets. The effect of phylogenetic methodology, data quality, alignment trimming strategy, gene and taxon sampling, and the presence of outlier genes were investigated. Our analyses revealed a lack of support for host monophyly in the shorter individual data sets. However, when analyzed together under rigorous data curation and complex mixture models, the combined nuclear data sets supported the monophyly of primary photosynthetic eukaryotes (Archaeplastida) and recovered a putative association with plastid-lacking Picozoa. This study represents an important step toward better understanding deep eukaryotic evolution and the origin of plastids. [Archaeplastida; Bayesian; chloroplast; maximum likelihood; mixture model; ortholog; outlier loci; paralog; protist.].


Assuntos
Eucariotos , Plastídeos , Teorema de Bayes , Eucariotos/genética , Filogenia , Plastídeos/genética , Simbiose/genética
17.
J Anim Ecol ; 91(6): 1163-1179, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34695234

RESUMO

Understanding the genomic basis of adaptation to different abiotic environments is important in the context of climate change and resulting short-term environmental fluctuations. Using functional and comparative genomics approaches, we here investigated whether signatures of genomic adaptation to a set of environmental parameters are concentrated in specific subsets of genes and functions in lacertid lizards and other vertebrates. We first identify 200 genes with signatures of positive diversifying selection from transcriptomes of 24 species of lacertid lizards and demonstrate their involvement in physiological and morphological adaptations to climate. To understand how functionally similar these genes are to previously predicted candidate functions for climate adaptation and to compare them with other vertebrate species, we then performed a meta-analysis of 1,100 genes under selection obtained from -omics studies in vertebrate species adapted to different abiotic factors. We found that the vertebrate gene set formed a tightly connected interactome, which was to 23% enriched in previously predicted functions of adaptation to climate, and to a large part (18%) involved in organismal stress response. We found a much higher degree of identical genes being repeatedly selected among different animal groups (43.6%), and of functional similarity and post-translational modifications than expected by chance, and no clear functional division between genes used for ectotherm and endotherm physiological strategies. In total, 171 out of 200 genes of Lacertidae were part of this network. These results highlight an important role of a comparatively small set of genes and their functions in environmental adaptation and narrow the set of candidate pathways and markers to be used in future research on adaptation and stress response related to climate change.


Assuntos
Genômica , Lagartos , Aclimatação/genética , Adaptação Fisiológica/genética , Animais , Mudança Climática , Lagartos/genética , Seleção Genética
18.
Proc Biol Sci ; 288(1963): 20212168, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34814752

RESUMO

Streptophytes are one of the major groups of the green lineage (Chloroplastida or Viridiplantae). During one billion years of evolution, streptophytes have radiated into an astounding diversity of uni- and multicellular green algae as well as land plants. Most divergent from land plants is a clade formed by Mesostigmatophyceae, Spirotaenia spp. and Chlorokybophyceae. All three lineages are species-poor and the Chlorokybophyceae consist of a single described species, Chlorokybus atmophyticus. In this study, we used phylogenomic analyses to shed light into the diversity within Chlorokybus using a sampling of isolates across its known distribution. We uncovered a consistent deep genetic structure within the Chlorokybus isolates, which prompted us to formally extend the Chlorokybophyceae by describing four new species. Gene expression differences among Chlorokybus species suggest certain constitutive variability that might influence their response to environmental factors. Failure to account for this diversity can hamper comparative genomic studies aiming to understand the evolution of stress response across streptophytes. Our data highlight that future studies on the evolution of plant form and function can tap into an unknown diversity at key deep branches of the streptophytes.


Assuntos
Clorófitas , Embriófitas , Clorófitas/genética , Embriófitas/genética , Evolução Molecular , Genoma , Filogenia , Plantas/genética
19.
Mol Phylogenet Evol ; 161: 107167, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33798672

RESUMO

Mountain ranges offer opportunities for understanding how species evolved and diversified across different environmental conditions. Neotropical frogs of the genus Oreobates (Anura: Craugastoridae) are adapted to highland and lowland habitats along the Andes, but many aspects of their evolution remain unknown. We studied their evolutionary history using ~18,000 exons enriched by targeted sequence-capture. Since capture success was very variable across samples, we evaluated to what degree differing data filtering produced robust inferences. The inferred evolutionary framework evidenced phylogenetic discordances among lowland species that can be explained by taxonomic misidentification or admixture of ancestral lineages. Highland species showed smaller effective populations than lowland frogs, probably due to greater habitat fragmentation in montane environments. Stronger genetic drift likely decreased the power of purifying selection and led to an increased proportion of nonsynonymous mutations in highland populations that could play an important role in their adaptation. Overall, our work sheds light on the evolutionary history and diversification of this group of Neotropical frogs along elevational gradients in the Andes as well as on their patterns of intraspecific diversity.


Assuntos
Altitude , Anuros/genética , Ecossistema , Filogenia , Animais
20.
Mol Phylogenet Evol ; 155: 106967, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33031928

RESUMO

Hybridization can leave genealogical signatures in an organism's genome, originating from the parental lineages and persisting over time. This potentially confounds phylogenetic inference methods that aim to represent evolution as a strictly bifurcating tree. We apply a phylotranscriptomic approach to study the evolutionary history of, and test for inter-lineage introgression in the Salamandridae, a Holarctic salamanders group of interest in studies of toxicity and aposematism, courtship behavior, and molecular evolution. Although the relationships between the 21 currently recognized salamandrid genera have been the subject of numerous molecular phylogenetic studies, some branches have remained controversial and sometimes affected by discordances between mitochondrial vs. nuclear trees. To resolve the phylogeny of this family, and understand the source of mito-nuclear discordance, we generated new transcriptomic (RNAseq) data for 20 salamandrids and used these along with published data, including 28 mitochondrial genomes, to obtain a comprehensive nuclear and mitochondrial perspective on salamandrid evolution. Our final phylotranscriptomic data set included 5455 gene alignments for 40 species representing 17 of the 21 salamandrid genera. Using concatenation and species-tree phylogenetic methods, we find (1) Salamandrina sister to the clade of the "True Salamanders" (consisting of Chioglossa, Mertensiella, Lyciasalamandra, and Salamandra), (2) Ichthyosaura sister to the Near Eastern genera Neurergus and Ommatotriton, (3) Triturus sister to Lissotriton, and (4) Cynops paraphyletic with respect to Paramesotriton and Pachytriton. Combining introgression tests and phylogenetic networks, we find evidence for introgression among taxa within the clades of "Modern Asian Newts" and "Modern European Newts". However, we could not unambiguously identify the number, position, and direction of introgressive events. Combining evidence from nuclear gene analysis with the observed mito-nuclear phylogenetic discordances, we hypothesize a scenario with hybridization and mitochondrial capture among ancestral lineages of (1) Lissotriton into Ichthyosaura and (2) Triturus into Calotriton, plus introgression of nuclear genes from Triturus into Lissotriton. Furthermore, both mitochondrial capture and nuclear introgression may have occurred among lineages assigned to Cynops. More comprehensive genomic data will, in the future, allow testing this against alternative scenarios involving hybridization with other, extinct lineages of newts.


Assuntos
Hibridização Genética , Filogenia , Urodelos/classificação , Urodelos/genética , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Genoma Mitocondrial , Mitocôndrias/genética , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA