Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Epidemiol Infect ; 152: e36, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38326275

RESUMO

Aviation passenger screening has been used worldwide to mitigate the translocation risk of SARS-CoV-2. We present a model that evaluates factors in screening strategies used in air travel and assess their relative sensitivity and importance in identifying infectious passengers. We use adapted Monte Carlo simulations to produce hypothetical disease timelines for the Omicron variant of SARS-CoV-2 for travelling passengers. Screening strategy factors assessed include having one or two RT-PCR and/or antigen tests prior to departure and/or post-arrival, and quarantine length and compliance upon arrival. One or more post-arrival tests and high quarantine compliance were the most important factors in reducing pathogen translocation. Screening that combines quarantine and post-arrival testing can shorten the length of quarantine for travelers, and variability and mean testing sensitivity in post-arrival RT-PCR and antigen tests decrease and increase with the greater time between the first and second post-arrival test, respectively. This study provides insight into the role various screening strategy factors have in preventing the translocation of infectious diseases and a flexible framework adaptable to other existing or emerging diseases. Such findings may help in public health policy and decision-making in present and future evidence-based practices for passenger screening and pandemic preparedness.


Assuntos
Viagem Aérea , COVID-19 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2/genética , Método de Monte Carlo
2.
Anal Chem ; 95(33): 12195-12199, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37551970

RESUMO

Mass spectrometry is a powerful tool for identifying and analyzing biomolecules such as metabolites and lipids in complex biological samples. Liquid chromatography and gas chromatography mass spectrometry studies quite commonly involve large numbers of samples, which can require significant time for sample preparation and analyses. To accommodate such studies, the samples are commonly split into batches. Inevitably, variations in sample handling, temperature fluctuation, imprecise timing, column degradation, and other factors result in systematic errors or biases of the measured abundances between the batches. Numerous methods are available via R packages to assist with batch correction for omics data; however, since these methods were developed by different research teams, the algorithms are available in separate R packages, each with different data input and output formats. We introduce the malbacR package, which consolidates 11 common batch effect correction methods for omics data into one place so users can easily implement and compare the following: pareto scaling, power scaling, range scaling, ComBat, EigenMS, NOMIS, RUV-random, QC-RLSC, WaveICA2.0, TIGER, and SERRF. The malbacR package standardizes data input and output formats across these batch correction methods. The package works in conjunction with the pmartR package, allowing users to seamlessly include the batch effect correction in a pmartR workflow without needing any additional data manipulation.


Assuntos
Algoritmos , Projetos de Pesquisa , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Cromatografia Gasosa-Espectrometria de Massas
3.
J Proteome Res ; 20(1): 1-13, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32929967

RESUMO

The throughput efficiency and increased depth of coverage provided by isobaric-labeled proteomics measurements have led to increased usage of these techniques. However, the structure of missing data is different than unlabeled studies, which prompts the need for this review to compare the efficacy of nine imputation methods on large isobaric-labeled proteomics data sets to guide researchers on the appropriateness of various imputation methods. Imputation methods were evaluated by accuracy, statistical hypothesis test inference, and run time. In general, expectation maximization and random forest imputation methods yielded the best performance, and constant-based methods consistently performed poorly across all data set sizes and percentages of missing values. For data sets with small sample sizes and higher percentages of missing data, results indicate that statistical inference with no imputation may be preferable. On the basis of the findings in this review, there are core imputation methods that perform better for isobaric-labeled proteomics data, but great care and consideration as to whether imputation is the optimal strategy should be given for data sets comprised of a small number of samples.


Assuntos
Algoritmos , Proteômica
4.
Rapid Commun Mass Spectrom ; 31(18): 1534-1540, 2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28696545

RESUMO

RATIONALE: The field of highly accurate and precise isotope ratio analysis, for use in nonproliferation, has been dominated by thermal ionization and inductively coupled plasma mass spectrometry. While these techniques are considered the gold standard for isotope ratio analysis, a downsized instrument capable of accurately and precisely measuring uranium (U) isotope ratios is desirable for field studies or in laboratories with limited infrastructure. METHODS: The developed system interfaces the liquid sampling, an atmospheric pressure glow discharge (LS-APGD) ion source, with a high-resolution Exactive Orbitrap mass spectrometer. With this experimental setup certified U isotope standards and unknown samples were analyzed. The accuracy and precision of the system were then determined. RESULTS: The LS-APGD/Exactive instrument measured a certified reference material of natural U (235 U/238 U = 0.007261) with a 235 U/238 U ratio of 0.007065 and a % relative standard uncertainty of 0.082, meeting the International Target Values for the destructive analysis of U. In addition, when three unknowns were measured and these measurements were compared with the results from an ICP multi-collector instrument, there were no statistical differences between the two instruments. CONCLUSIONS: The LS-APGD/Orbitrap system, while still in the preliminary stages of development, offers highly accurate and precise isotope ratio results that suggest a potential paradigm shift in the world of isotope ratio analysis. Furthermore, the portability of the LS-APGD as an elemental ion source, combined with the small size and smaller operating demands of the Orbitrap, suggests that the instrumentation is capable of being field-deployable.

5.
J Comput Biol ; 21(9): 676-90, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24918812

RESUMO

Phylogenetic stochastic mapping is a method for reconstructing the history of trait changes on a phylogenetic tree relating species/organism carrying the trait. State-of-the-art methods assume that the trait evolves according to a continuous-time Markov chain (CTMC) and works well for small state spaces. The computations slow down considerably for larger state spaces (e.g., space of codons), because current methodology relies on exponentiating CTMC infinitesimal rate matrices-an operation whose computational complexity grows as the size of the CTMC state space cubed. In this work, we introduce a new approach, based on a CTMC technique called uniformization, which does not use matrix exponentiation for phylogenetic stochastic mapping. Our method is based on a new Markov chain Monte Carlo (MCMC) algorithm that targets the distribution of trait histories conditional on the trait data observed at the tips of the tree. The computational complexity of our MCMC method grows as the size of the CTMC state space squared. Moreover, in contrast to competing matrix exponentiation methods, if the rate matrix is sparse, we can leverage this sparsity and increase the computational efficiency of our algorithm further. Using simulated data, we illustrate advantages of our MCMC algorithm and investigate how large the state space needs to be for our method to outperform matrix exponentiation approaches. We show that even on the moderately large state space of codons our MCMC method can be significantly faster than currently used matrix exponentiation methods.


Assuntos
Modelos Genéticos , Algoritmos , Simulação por Computador , Evolução Molecular , Cadeias de Markov , Método de Monte Carlo , Filogenia , Distribuição de Poisson , Proteínas/genética
6.
Evol Bioinform Online ; 9: 235-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23818749

RESUMO

Phylogenetic recombination detection is a fundamental task in bioinformatics and evolutionary biology. Most of the computational tools developed to attack this important problem are not integrated into the growing suite of R packages for statistical analysis of molecular sequences. Here, we present an R package, rbrothers, that makes a Bayesian multiple change-point model, one of the most sophisticated model-based phylogenetic recombination tools, available to R users. Moreover, we equip the Bayesian change-point model with a set of pre- and post- processing routines that will broaden the application domain of this recombination detection framework. Specifically, we implement an algorithm that forms the set of input trees required by multiple change-point models. We also provide functionality for checking Markov chain Monte Carlo convergence and creating estimation result summaries and graphics. Using rbrothers, we perform a comparative analysis of two Salmonella enterica genes, fimA and fimH, that encode major and adhesive subunits of the type 1 fimbriae, respectively. We believe that rbrothers, available at R-Forge: http://evolmod.r-forge.r-project.org/, will allow researchers to incorporate recombination detection into phylogenetic workflows already implemented in R.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA