Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Environ Sci Technol ; 58(18): 7937-7946, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38669108

RESUMO

Emissions of biogenic reactive carbon significantly influence atmospheric chemistry, contributing to the formation and destruction of secondary pollutants, such as secondary organic aerosol and ozone. While isoprene and monoterpenes are a major fraction of emissions and have been extensively studied, substantially less is known about the atmospheric impacts of higher-molecular-weight terpenes such as sesquiterpenes. In particular, sesquiterpenes have been proposed to play a significant role in ozone chemical loss due to the very high ozone reaction rates of certain isomers. However, relatively little data are available on the isomer-resolved composition of this compound class or its role in ozone chemistry. This study examines the chemical diversity of sesquiterpenes and availability of ozone reaction rate constants to evaluate the current understanding of their ozone reactivity. Sesquiterpenes are found to be highly diverse, with 72 different isomers reported and relatively few isomers that contribute a large mass fraction across all studies. For the small number of isomers with known ozone reaction rates, estimated rates may be 25 times higher or lower than measurements, indicating that estimated reaction rates are highly uncertain. Isomers with known ozone reaction rates make up approximately half of the mass of sesquiterpenes in concentration and emission measurements. Consequently, the current state of the knowledge suggests that the total ozone reactivity of sesquiterpenes cannot be quantified without very high uncertainty, even if isomer-resolved composition is known. These results are in contrast to monoterpenes, which are less diverse and for which ozone reaction rates are well-known, and in contrast to hydroxyl reactivity of monoterpenes and sesquiterpenes, for which reaction rates can be reasonably well estimated. Improved measurements of a relatively small number of sesquiterpene isomers would reduce uncertainties and improve our understanding of their role in regional and global ozone chemistry.


Assuntos
Atmosfera , Ozônio , Sesquiterpenos , Ozônio/química , Sesquiterpenos/química , Atmosfera/química , Poluentes Atmosféricos/química , Isomerismo
2.
Environ Sci Technol ; 58(11): 4926-4936, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38452107

RESUMO

This study introduces a novel surface-enhanced Raman spectroscopy (SERS)-based lateral flow test (LFT) dipstick that integrates digital analysis for highly sensitive and rapid viral quantification. The SERS-LFT dipsticks, incorporating gold-silver core-shell nanoparticle probes, enable pixel-based digital analysis of large-area SERS scans. Such an approach enables ultralow-level detection of viruses that readily distinguishes positive signals from background noise at the pixel level. The developed digital SERS-LFTs demonstrate limits of detection (LODs) of 180 fg for SARS-CoV-2 spike protein, 120 fg for nucleocapsid protein, and 7 plaque forming units for intact virus, all within <30 min. Importantly, digital SERS-LFT methods maintain their robustness and their LODs in the presence of indoor dust, thus underscoring their potential for accurate and reliable virus diagnosis and quantification in real-world environmental settings.


Assuntos
Nanopartículas Metálicas , Glicoproteína da Espícula de Coronavírus , Vírus , Humanos , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Limite de Detecção , Ouro/química
3.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34341119

RESUMO

Decades of air quality improvements have substantially reduced the motor vehicle emissions of volatile organic compounds (VOCs). Today, volatile chemical products (VCPs) are responsible for half of the petrochemical VOCs emitted in major urban areas. We show that VCP emissions are ubiquitous in US and European cities and scale with population density. We report significant VCP emissions for New York City (NYC), including a monoterpene flux of 14.7 to 24.4 kg ⋅ d-1 ⋅ km-2 from fragranced VCPs and other anthropogenic sources, which is comparable to that of a summertime forest. Photochemical modeling of an extreme heat event, with ozone well in excess of US standards, illustrates the significant impact of VCPs on air quality. In the most populated regions of NYC, ozone was sensitive to anthropogenic VOCs (AVOCs), even in the presence of biogenic sources. Within this VOC-sensitive regime, AVOCs contributed upwards of ∼20 ppb to maximum 8-h average ozone. VCPs accounted for more than 50% of this total AVOC contribution. Emissions from fragranced VCPs, including personal care and cleaning products, account for at least 50% of the ozone attributed to VCPs. We show that model simulations of ozone depend foremost on the magnitude of VCP emissions and that the addition of oxygenated VCP chemistry impacts simulations of key atmospheric oxidation products. NYC is a case study for developed megacities, and the impacts of VCPs on local ozone are likely similar for other major urban regions across North America or Europe.


Assuntos
Poluentes Atmosféricos/análise , Ozônio , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/química , Poluição do Ar , Cidades , Monitoramento Ambiental/métodos , Europa (Continente) , Humanos , Modelos Teóricos , Monoterpenos/análise , Cidade de Nova Iorque , Óxidos de Nitrogênio/análise , Óxidos de Nitrogênio/química , Odorantes/análise , Densidade Demográfica , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/química
4.
Environ Sci Technol ; 57(15): 6263-6272, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37011031

RESUMO

Urbanization and fires perturb the quantities and composition of fine organic aerosol in the central Amazon, with ramifications for radiative forcing and public health. These disturbances include not only direct emissions of particulates and secondary organic aerosol (SOA) precursors but also changes in the pathways through which biogenic precursors form SOA. The composition of ambient organic aerosol is complex and incompletely characterized, encompassing millions of potential structures relatively few of which have been synthesized and characterized. Through analysis of submicron aerosol samples from the Green Ocean Amazon (GoAmazon2014/5) field campaign by two-dimensional gas chromatography coupled with machine learning, ∼1300 unique compounds were traced and characterized over two seasons. Fires and urban emissions produced chemically and interseasonally distinct impacts on product signatures, with only ∼50% of compounds observed in both seasons. Seasonally unique populations point to the importance of aqueous processing in Amazonian aerosol aging, but further mechanistic insights are impeded by limited product identity knowledge. Less than 10% of compounds were identifiable at an isomer-specific level. Overall, the findings (i) provide compositional characterization of anthropogenic influence on submicron organic aerosol in the Amazon, (ii) identify key season-to-season differences in chemical signatures, and (iii) highlight high-priority knowledge gaps in current speciated knowledge.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Material Particulado/análise , Estações do Ano , Aerossóis/análise , Poeira/análise
5.
Environ Sci Technol ; 55(23): 15672-15679, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34784200

RESUMO

Volatile chemical products (VCPs) account for increasing fractions of organic carbon emitted to the atmosphere, particularly in urban areas. Fragrances are potentially reactive components that are added to many VCPs. To better constrain these emissions, 11 commercially available liquid fragrance mixtures were characterized for their composition and their evaporation modeled. Emissions of mass, hydroxyl reactivity, and ozone reactivity were estimated by modeling under four different scenarios. Fragrance compounds were generally less than one-half the mass of fragrance mixtures, with the balance comprised of solvents and plasticizers and unresolved mass thought to be dominated by plasticizers. The results showed that terpenes and terpenoids account for nearly all of the emitted mass and reactivity while only comprising ∼10% w/w on average of the liquid fragrance mixtures. Most of the reactivity is emitted within hours, with ozone reactivity evolving more rapidly than OH reactivity and comprised almost entirely of terpenes. Limonene, a common fragrance constituent, dominates the reactivity of emitted carbon. Generally, 20-40% of the potential hydroxyl reactivity contained in the fragrance mixture does not evaporate on time scales sufficient to have an impact on local or regional air quality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Radical Hidroxila , Odorantes , Ozônio/análise , Compostos Orgânicos Voláteis/análise
6.
Proc Natl Acad Sci U S A ; 115(9): 2038-2043, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29440409

RESUMO

The chemical complexity of atmospheric organic aerosol (OA) has caused substantial uncertainties in understanding its origins and environmental impacts. Here, we provide constraints on OA origins through compositional characterization with molecular-level details. Our results suggest that secondary OA (SOA) from monoterpene oxidation accounts for approximately half of summertime fine OA in Centreville, AL, a forested area in the southeastern United States influenced by anthropogenic pollution. We find that different chemical processes involving nitrogen oxides, during days and nights, play a central role in determining the mass of monoterpene SOA produced. These findings elucidate the strong anthropogenic-biogenic interaction affecting ambient aerosol in the southeastern United States and point out the importance of reducing anthropogenic emissions, especially under a changing climate, where biogenic emissions will likely keep increasing.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/química , Monoterpenos/química , Estações do Ano , Sudeste dos Estados Unidos , Fatores de Tempo
7.
Anal Chem ; 92(18): 12481-12488, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32786433

RESUMO

Complex mixtures of hydrocarbons are ubiquitous as petroleum fuels and, consequently, environmental contaminants. Because they contain thousands of individual components with similar molecular structures, detailed chemical characterization of hydrocarbon mixtures relies on advanced analytical techniques that are not accessible to many researchers. Many analyses of hydrocarbon mixtures instead characterize them as "unresolved complex mixtures", with quantification limited to a small number of resolvable components and/or total observed mass within specified volatility ranges. This work develops a new analytical approach to characterize the hydrocarbon component of petroleum and environmental mixtures by "hydrocarbon group" (defined by carbon number, degree of unsaturation and, in certain cases, degree of branching) using gas chromatography coupled to a unit-mass-resolution electron ionization quadrupole mass spectrometer (GC/EI-MS), a standard and widely available instrument. Average mass spectra of hydrocarbons from a widely used spectral library are combined with chromatographic signal representing the molecular ion of each hydrocarbon group to recreate the magnitude and mass spectra of the chromatogram. Characterization of hydrocarbons in diesel fuel by this approach is in good agreement with state-of-the-art techniques relying on high-resolution and fast-response mass spectrometers. Application of this approach to subsurface soil gas samples from remediated sites of underground storage tank spills demonstrates that composition of hydrocarbons in environmental samples varies significantly and that the total signal of samples from contaminated sites may contain a substantial fraction of oxygenated components.

8.
Environ Sci Technol ; 54(23): 14923-14935, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33205951

RESUMO

Despite the central role of reactive organic carbon (ROC) in the formation of secondary species that impact global air quality and climate, our assessment of ROC abundance and impacts is challenged by the diversity of species that contribute to it. We revisit measurements of ROC species made during two field campaigns in the United States: the 2013 SOAS campaign in forested Centreville, AL, and the 2010 CalNex campaign in urban Pasadena, CA. We find that average measured ROC concentrations are about twice as high in Pasadena (73.8 µgCsm-3) than in Centreville (36.5 µgCsm-3). However, the OH reactivity (OHR) measured at these sites is similar (20.1 and 19.3 s-1). The shortfall in OHR when summing up measured contributions is 31%, at Pasadena and 14% at Centreville, suggesting that there may be a larger reservoir of unmeasured ROC at the former site. Estimated O3 production and SOA potential (defined as concentration × yield) are both higher during CalNex than SOAS. This analysis suggests that the ROC in urban California is less reactive, but due to higher concentrations of oxides of nitrogen and hydroxyl radicals, is more efficient in terms of O3 and SOA production, than in the forested southeastern U.S.


Assuntos
Poluentes Atmosféricos , Ozônio , Aerossóis/análise , Poluentes Atmosféricos/análise , California , Carbono , Ozônio/análise , Sudeste dos Estados Unidos
9.
Environ Sci Technol ; 54(10): 5980-5991, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32271021

RESUMO

Anthropogenic emissions alter secondary organic aerosol (SOA) formation chemistry from naturally emitted isoprene. We use correlations of tracers and tracer ratios to provide new perspectives on sulfate, NOx, and particle acidity influencing isoprene-derived SOA in two isoprene-rich forested environments representing clean to polluted conditions-wet and dry seasons in central Amazonia and Southeastern U.S. summer. We used a semivolatile thermal desorption aerosol gas chromatograph (SV-TAG) and filter samplers to measure SOA tracers indicative of isoprene/HO2 (2-methyltetrols, C5-alkene triols, 2-methyltetrol organosulfates) and isoprene/NOx (2-methylglyceric acid, 2-methylglyceric acid organosulfate) pathways. Summed concentrations of these tracers correlated with particulate sulfate spanning three orders of magnitude, suggesting that 1 µg m-3 reduction in sulfate corresponds with at least ∼0.5 µg m-3 reduction in isoprene-derived SOA. We also find that isoprene/NOx pathway SOA mass primarily comprises organosulfates, ∼97% in the Amazon and ∼55% in Southeastern United States. We infer under natural conditions in high isoprene emission regions that preindustrial aerosol sulfate was almost exclusively isoprene-derived organosulfates, which are traditionally thought of as representative of an anthropogenic influence. We further report the first field observations showing that particle acidity correlates positively with 2-methylglyceric acid partitioning to the gas phase and negatively with the ratio of 2-methyltetrols to C5-alkene triols.


Assuntos
Poluentes Atmosféricos , Hemiterpenos , Aerossóis/análise , Brasil , Butadienos , Pentanos , Sudeste dos Estados Unidos
10.
Indoor Air ; 29(1): 17-29, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30387208

RESUMO

Emission, transport, and fate of semi-volatile organic compounds (SVOCs), which include plasticizers, flame retardants, pesticides, biocides, and oxidation products of volatile organic compounds, are influenced in part by their tendency to sorb to indoor surfaces. A thin organic film enhances this effect, because it acts as both an SVOC sink and a source, thus potentially prolonging human exposure. Unfortunately, our ability to describe the initial formation and subsequent growth of organic films on indoor surfaces is limited. To overcome this gap, we propose a mass transfer model accounting for adsorption, condensation, and absorption of multiple gas-phase SVOCs on impervious, vertical indoor surfaces. Further model development and experimental research are needed including more realistic scenarios accounting for surface heterogeneity, non-ideal organic mixtures, and particle deposition.


Assuntos
Poluição do Ar em Ambientes Fechados , Modelos Químicos , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , Absorção Fisico-Química , Adsorção , Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados/análise , Humanos , Compostos Orgânicos Voláteis/análise
11.
Proc Natl Acad Sci U S A ; 112(1): 37-42, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25535345

RESUMO

Secondary organic aerosol (SOA) constitutes a substantial fraction of fine particulate matter and has important impacts on climate and human health. The extent to which human activities alter SOA formation from biogenic emissions in the atmosphere is largely undetermined. Here, we present direct observational evidence on the magnitude of anthropogenic influence on biogenic SOA formation based on comprehensive ambient measurements in the southeastern United States (US). Multiple high-time-resolution mass spectrometry organic aerosol measurements were made during different seasons at various locations, including urban and rural sites in the greater Atlanta area and Centreville in rural Alabama. Our results provide a quantitative understanding of the roles of anthropogenic SO2 and NOx in ambient SOA formation. We show that isoprene-derived SOA is directly mediated by the abundance of sulfate, instead of the particle water content and/or particle acidity as suggested by prior laboratory studies. Anthropogenic NOx is shown to enhance nighttime SOA formation via nitrate radical oxidation of monoterpenes, resulting in the formation of condensable organic nitrates. Together, anthropogenic sulfate and NOx can mediate 43-70% of total measured organic aerosol (29-49% of submicron particulate matter, PM1) in the southeastern US during summer. These measurements imply that future reduction in SO2 and NOx emissions can considerably reduce the SOA burden in the southeastern US. Updating current modeling frameworks with these observational constraints will also lead to more accurate treatment of aerosol formation for regions with substantial anthropogenic-biogenic interactions and consequently improve air quality and climate simulations.

12.
Analyst ; 142(13): 2395-2403, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28555694

RESUMO

A new analytical methodology combining comprehensive two-dimensional gas chromatography (GC×GC), dual ionization energies and high resolution time of flight mass spectrometry has been developed that improves molecular level identification of organic compounds in complex environmental samples. GC×GC maximizes compound separation providing cleaner mass spectra by minimizing erroneous fragments from interferences and co-eluting peaks. Traditional electron ionization (EI, 70 eV) provides MS fragmentation patterns that can be matched to published EI MS libraries while vacuum ultraviolet photoionization (VUV, 10.5 eV) yields MS with reduced fragmentation enhancing the abundance of the molecular ion providing molecular formulas when combined with high resolution mass spectrometry. We demonstrate this new approach by applying it to a sample of organic aerosol. In this sample, 238 peaks were matched to EI MS library data with FM ≥ 800 but a fifth (42 compounds) were determined to be incorrectly identified because the molecular formula was not confirmed by the VUV MS data. This highlights the importance of using a complementary technique to confirm compound identifications even for peaks with very good matching statistics. In total, 171 compounds were identified by EI MS matching to library spectra with confirmation of the molecular formula from the high resolution VUV MS data and were not dependent on the matching statistics being above a threshold value. A large number of unidentified peaks were still observed with FM < 800, which in routine analysis would typically be neglected. Where possible, these peaks were assigned molecular formulas from the VUV MS data (211 in total). In total, the combination of EI and VUV MS data provides more than twice as much molecular level peak information than traditional approaches and improves confidence in the identification of individual organic compounds. The molecular formula data from the VUV MS data was used, in conjunction with GC×GC retention times and the observed EI MS, to generate a new, searchable EI MS library compatible with the standard NIST MS search program. This library is deliberately dynamic and editable so that other end users can add new entries and update existing entries as new information becomes available.

13.
Environ Sci Technol ; 50(18): 9952-62, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27552285

RESUMO

Exchange of atmospheric organic compounds between gas and particle phases is important in the production and chemistry of particle-phase mass but is poorly understood due to a lack of simultaneous measurements in both phases of individual compounds. Measurements of particle- and gas-phase organic compounds are reported here for the southeastern United States and central Amazonia. Polyols formed from isoprene oxidation contribute 8% and 15% on average to particle-phase organic mass at these sites but are also observed to have substantial gas-phase concentrations contrary to many models that treat these compounds as nonvolatile. The results of the present study show that the gas-particle partitioning of approximately 100 known and newly observed oxidation products is not well explained by environmental factors (e.g., temperature). Compounds having high vapor pressures have higher particle fractions than expected from absorptive equilibrium partitioning models. These observations support the conclusion that many commonly measured biogenic oxidation products may be bound in low-volatility mass (e.g., accretion products, inorganic-organic adducts) that decomposes to individual compounds on analysis. However, the nature and extent of any such bonding remains uncertain. Similar conclusions are reach for both study locations, and average particle fractions for a given compound are consistent within ∼25% across measurement sites.


Assuntos
Aerossóis , Compostos Orgânicos/química , Oxirredução , Pressão de Vapor , Volatilização
14.
Environ Sci Technol ; 49(22): 13130-8, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26460682

RESUMO

Comprehensive chemical information is needed to understand the environmental fate and impact of hydrocarbons released during oil spills. However, chemical information remains incomplete because of the limitations of current analytical techniques and the inherent chemical complexity of crude oils. In this work, gas chromatography (GC)-amenable C9-C33 hydrocarbons were comprehensively characterized from the National Institute of Standards and Technology Standard Reference Material (NIST SRM) 2779 Gulf of Mexico crude oil by GC coupled to vacuum ultraviolet photoionization mass spectrometry (GC/VUV-MS), with a mass balance of 68 ± 22%. This technique overcomes one important limitation faced by traditional GC and even comprehensive 2D gas chromatography (GC×GC): the necessity for individual compounds to be chromatographically resolved from one another in order to be characterized. VUV photoionization minimizes fragmentation of the molecular ions, facilitating the characterization of the observed hydrocarbons as a function of molecular weight (carbon number, NC), structure (number of double bond equivalents, NDBE), and mass fraction (mg kg(-1)), which represent important metrics for understanding their fate and environmental impacts. Linear alkanes (8 ± 1%), branched alkanes (11 ± 2%), and cycloalkanes (37 ± 12%) dominated the mass with the largest contribution from cycloalkanes containing one or two rings and one or more alkyl side chains (27 ± 9%). Linearity and good agreement with previous work for a subset of >100 components and for the sum of compound classes provided confidence in our measurements and represents the first independent assessment of our analytical approach and calibration methodology. Another crude oil collected from the Marlin platform (35 km northeast of the Macondo well) was shown to be chemically identical within experimental errors to NIST SRM 2779, demonstrating that Marlin crude is an appropriate surrogate oil for researchers conducting laboratory research into impacts of the DeepWater Horizon disaster.


Assuntos
Hidrocarbonetos/química , Petróleo/análise , Cromatografia Gasosa , Golfo do México , Isomerismo , Espectrometria de Massas , Peso Molecular , Campos de Petróleo e Gás/química , Poluição por Petróleo/análise , Padrões de Referência , Temperatura
15.
Environ Sci Technol ; 49(16): 9768-77, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26200667

RESUMO

Traditional descriptions of gas-particle partitioning of organic aerosols (OA) rely solely on thermodynamic properties (e.g., volatility). Under realistic conditions where phase partitioning is dynamic rather than static, the transformation of OA involves the interplay of multiphase partitioning with oxidative aging. A key challenge remains in quantifying the fundamental time scales for evaporation and oxidation of semivolatile OA. In this paper, we use isomer-resolved product measurements of a series of normal-alkanes (C18, C20, C22, and C24) to distinguish between gas-phase and heterogeneous oxidation products formed by reaction with hydroxyl radicals (OH). The product isomer distributions when combined with kinetics measurements of evaporation and oxidation enable a quantitative description of the multiphase time scales to be simulated using a single-particle kinetic model. Multiphase partitioning and oxidative transformation of semivolatile normal-alkanes under laboratory conditions is largely controlled by the particle phase state, since the time scales of heterogeneous oxidation and evaporation are found to occur on competing time scales (on the order of 10(-1) h). This is in contrast to atmospheric conditions where heterogeneous oxidation time scales are expected to be much longer (on the order of 10(2) h), with gas-phase oxidation being the dominant process regardless of the evaporation kinetics. Our results demonstrate the dynamic nature of OA multiphase partitioning and oxidative aging and reveal that the fundamental time scales of these processes are crucial for reliably extending laboratory measurements of OA phase partitioning and aging to the atmosphere.


Assuntos
Aerossóis/análise , Alcanos/química , Atmosfera/química , Simulação por Computador , Isomerismo , Cinética , Oxirredução , Fatores de Tempo , Volatilização
16.
ACS EST Air ; 1(6): 464-473, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38898934

RESUMO

Traditional online measurements of the chemical composition of particulate matter have relied on expensive and complex research-grade instrumentation based on mass spectrometry and/or chromatography. However, routine monitoring requires lower-cost alternatives that can be operated autonomously, and such tools are lacking. Routine monitoring of particulate matter, especially organic aerosol, relies instead on offline techniques such as filter collection that require significant operator effort. To address this gap, we present here a new online instrument, the "ChemSpot", that provides information on organic aerosol mass loading, volatility, and degree of oxygenation, along with sulfur content. The instrument grows particles with water condensation, impacts them onto a passivated surface with low heat capacity, and uses stepped thermal desorption of analytes to a combination of flame ionization detector (FID) and flame photometric detector (FPD) and then to a CO2 detector downstream of the FID/FPD setup. By relying on detectors designed for gas chromatography, calibration is achieved almost entirely through the introduction of gases without the need for regular introduction of particle-phase calibrants. Particle collection efficiency of greater than 95% was achieved consistently, and the collection cell was shown to rapidly and precisely heat to ∼800 °C at a rate as fast as 10 °C per second. Measurements of total organic carbon, volatility distribution of organic aerosol, total sulfur, and oxygen-to-carbon ratio (O:C) collected during a continuous multi-week period are presented here to demonstrate the autonomous operation of "ChemSpot". Colocated measurements with a mass spectrometer, an aerosol chemical speciation monitor (ACSM), show good correlation and relatively low bias between the instruments (mean absolute percentage error of 21% and 27% for organic carbon and equivalent sulfate measurements, respectively).

20.
J Hazard Mater ; 413: 125372, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33930950

RESUMO

Underground storage tanks containing petroleum or other hazardous substances are used widely for residential storage of home heating oil. Spills and leaks of fuel from these tanks are common, and resulting subsurface petroleum vapors may pose health risks. However, understanding of this risk is limited by a lack of observational data on the chemical composition of vapors from discharged fuel. We present here the composition of soil gas sampled at 66 remediated residential sites of underground heating oil discharges throughout Virginia using a newly developed data analysis technique that allows characterization of hydrocarbons by carbon number and degree of unsaturation. Measured concentrations of total petroleum hydrocarbons exceeded 100,000 µg/m3 at 12 sites, but its composition varied widely between sites. Concentrations of hydrocarbons from chemical classes differing by more than a few carbon numbers or degrees of unsaturation are found to be poorly correlated. Furthermore, differences in composition are poorly described by metrics expected to indicate subsurface weathering (e.g., discharge year, or ratio of n-heptadecane to pristane). These results suggest that the composition and magnitude of residual contamination at remediated subsurface discharges is driven by rarely documented spill characteristics (e.g., age and composition of source material, discharge rate, etc.).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA