Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Neurochir (Wien) ; 165(6): 1675-1681, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37129683

RESUMO

Peritumoral edema prevents fiber tracking from diffusion tensor imaging (DTI). A free-water correction may overcome this drawback, as illustrated in the case of a patient undergoing awake surgery for brain metastasis. The anatomical plausibility and accuracy of tractography with and without free-water correction were assessed with functional mapping and axono-cortical evoked-potentials (ACEPs) as reference methods. The results suggest a potential synergy between corrected DTI-based tractography and ACEPs to reliably identify and preserve white matter tracts during brain tumor surgery.


Assuntos
Neoplasias Encefálicas , Substância Branca , Humanos , Imagem de Tensor de Difusão/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/cirurgia , Substância Branca/patologia , Vigília , Água , Mapeamento Encefálico/métodos , Encéfalo/patologia
2.
J Neurosurg ; 141(3): 684-694, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626474

RESUMO

OBJECTIVE: The free-water correction algorithm (Freewater Estimator Using Interpolated Initialization [FERNET]) can be applied to standard diffusion tensor imaging (DTI) tractography to improve visualization of subcortical bundles in the peritumoral area of highly edematous brain tumors. Interest in its use for presurgical planning in purely infiltrative gliomas without peritumoral edema has never been evaluated. Using subcortical maps obtained with direct electrostimulation (DES) in awake surgery as a reference standard, the authors sought to 1) assess the accuracy of preoperative DTI-based tractography with FERNET in a series of nonedematous glioma patients, and 2) determine its potential usefulness in presurgical planning. METHODS: Based on DES-induced functional disturbances and tumor topography, the authors retrospectively reconstructed the putatively stimulated bundles and the peritumoral tracts of interest (various associative and projection pathways) of 12 patients. The tractography data obtained with and without FERNET were compared. RESULTS: The authors identified 21 putative tracts from 24 stimulation sites and reconstituted 49 tracts of interest. The number of streamlines of the putative tracts crossing the DES area was 26.8% higher (96.04 vs 75.75, p = 0.016) and their volume 20.4% higher (13.99 cm3 vs 11.62 cm3, p < 0.0001) with FERNET than with standard DTI. Additionally, the volume of the tracts of interest was 22.1% higher (9.69 cm3 vs 7.93 cm3, p < 0.0001). CONCLUSIONS: Free-water correction significantly increased the anatomical plausibility of the stimulated fascicles and the volume of tracts of interest in the peritumoral area of purely infiltrative nonedematous gliomas. Because of the functional importance of the peritumoral zone, applying FERNET to DTI could have potential implications on surgical planning and the safety of glioma resection.


Assuntos
Mapeamento Encefálico , Neoplasias Encefálicas , Imagem de Tensor de Difusão , Glioma , Humanos , Imagem de Tensor de Difusão/métodos , Glioma/diagnóstico por imagem , Glioma/cirurgia , Glioma/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Masculino , Pessoa de Meia-Idade , Feminino , Adulto , Estudos Retrospectivos , Mapeamento Encefálico/métodos , Idoso , Algoritmos , Estimulação Elétrica/métodos
3.
Clin Neurophysiol ; 167: 26-36, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39260137

RESUMO

OBJECTIVE: To identify optimal bipolar stimulation parameters for robust generation of brain evoked potentials (BEPs), namely the interelectrode distance (IED) and the intensity of stimulation (IS), in cortical and axonal stimulation. METHODS: In 15 patients who underwent awake surgery for brain tumor removal, BEPs were elicited at different values of IED and IS, respectively: 5 mm-5 mA, 5 mm-10 mA, and 10 mm-10 mA. The number of BEPs elicited by stimulation, as well as the delays and amplitudes of the N1 waves were compared between the different groups of stimulation parameters and according to the stimulated brain structure (cortical vs. axonal). RESULTS: The amplitudes of N1 increased with the intensity of bipolar stimulation, either in cortical or axonal stimulation, while N1 peak delays were not affected by the stimulation parameters. Furthermore, axonal stimulation produced more N1s than cortical stimulation, with lower latencies. CONCLUSIONS: Understanding the relationship between stimulation parameters and BEP is of utmost importance to determine whether the generated N1 waves accurately reflect the underlying structural anatomy. Other factors, such as stimulation frequency or pulse width and shape, may also play a role and warrant further investigation. SIGNIFICANCE: This study represents the first step in describing the influence of common bipolar stimulation parameters on robustness of BEPs by examining the impact of IED and IS on the N1 wave.

4.
Ann Clin Transl Neurol ; 11(6): 1502-1513, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38668642

RESUMO

OBJECTIVE: The sensory ventroposterior (VP) thalamic nuclei display a mediolateral somatotopic organization (respectively head, arm, and leg). We studied this somatotopy using directional VP deep brain stimulation (DBS) in patients treated for chronic neuropathic pain. METHODS: Six patients with central (four) or peripheral (two) neuropathic pain were treated by VP DBS using directional leads in a prospective study (clinicaltrials.gov NCT03399942). Lead-DBS toolbox was used for leads localization, visualization, and modeling of the volume of tissue activated (VTA). Stimulation was delivered in each direction, 1 month after surgery and correlated to the location of stimulation-induced paresthesias. The somatotopy was modeled by correlating the respective locations of paresthesias and VTAs. We recorded 48 distinct paresthesia maps corresponding to 48 VTAs (including 36 related to directional stimulation). RESULTS: We observed that, in each patient, respective body representations of the trunk, upper limb, lower limb, and head were closely located around the lead. These representations differed across patients, did not follow a common organization and were not concordant with the previously described somatotopic organization of the sensory thalamus. INTERPRETATION: Thalamic reorganization has been reported in chronic pain patients compared to non-pain patients operated for movement disorders in previous studies using intraoperative recordings and micro-stimulation. Using a different methodology, namely 3D representation of the VTA by the directional postoperative stimulation through a stationary electrode, our study brings additional arguments in favor of a reorganization of the VP thalamic somatotopy in patients suffering from chronic neuropathic pain of central or peripheral origin.


Assuntos
Estimulação Encefálica Profunda , Neuralgia , Humanos , Estimulação Encefálica Profunda/métodos , Masculino , Pessoa de Meia-Idade , Feminino , Neuralgia/terapia , Neuralgia/fisiopatologia , Idoso , Adulto , Tálamo/fisiopatologia , Estudos Prospectivos , Dor Crônica/terapia , Dor Crônica/fisiopatologia , Mapeamento Encefálico
5.
Brain Struct Funct ; 228(3-4): 815-830, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36840759

RESUMO

Bipolar direct electrical stimulation (DES) of an awake patient is the reference technique for identifying brain structures to achieve maximal safe tumor resection. Unfortunately, DES cannot be performed in all cases. Alternative surgical tools are, therefore, needed to aid identification of subcortical connectivity during brain tumor removal. In this pilot study, we sought to (i) evaluate the combined use of evoked potential (EP) and tractography for identification of white matter (WM) tracts under the functional control of DES, and (ii) provide clues to the electrophysiological effects of bipolar stimulation on neural pathways. We included 12 patients (mean age of 38.4 years) who had had a dMRI-based tractography and a functional brain mapping under awake craniotomy for brain tumor removal. Electrophysiological recordings of subcortical evoked potentials (SCEPs) were acquired during bipolar low frequency (2 Hz) stimulation of the WM functional sites identified during brain mapping. SCEPs were successfully triggered in 11 out of 12 patients. The median length of the stimulated fibers was 43.24 ± 19.55 mm, belonging to tracts of median lengths of 89.84 ± 24.65 mm. The electrophysiological (delay, amplitude, and speed of propagation) and structural (number and lengths of streamlines, and mean fractional anisotropy) measures were correlated. In our experimental conditions, SCEPs were essentially limited to a subpart of the bundles, suggesting a selectivity of action of the DES on the brain networks. Correlations between functional, structural, and electrophysiological measures portend the combined use of EPs and tractography as a potential intraoperative tool to achieve maximum safe resection in brain tumor surgery.


Assuntos
Neoplasias Encefálicas , Humanos , Adulto , Projetos Piloto , Neoplasias Encefálicas/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Encéfalo/patologia , Mapeamento Encefálico/métodos , Potenciais Evocados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA