Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 44(15): e2300132, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37191109

RESUMO

Six acrylamide resins, derived from l-phenylalanine and l-leucine, are designed for application in digital light processing (DLP) printers to obtain biodegradable thermoset polymers. The acrylamide copolymers are prepared under light irradiation at 405 nm and thermal post-curing processes. Low molecular weight poly(ethylene glycol)diacrylate (PEGDA) and N,N-dimethylacrylamide (DMAM), both liquid resins, are used as co-monomers and diluents for the amino acid-derived acrylamide solubilization. The presence of two phenylalanine units and two ester groups in the acrylamide monomer accuses a fast degradation rate in hydrolytic medium in 90 days. The residual products leached in the aqueous media prove to be non-cytotoxic, when 3D-printed samples are cultured with osteoblast cells (MG63), which represents an advantage for the safe disposal of printer waste materials. The scaled-up pieces derived from l-phenylalanine and diethylene glycol, as amino acid-derived acrylamide (named compound C), PEGDA and DMAM, present high dimensional stability after DLP printing of complex structures used as testing samples. Layers of 50 µm of thickness are well cohesive having isotropic behavior, as demonstrated with tensile-strain measurements performed in X-Y-Z (plane) directions. The compound C, which contains phenylalanine amino acid, reveals a promising potential to replace non-biodegradable acrylate polymers used in prototyping systems.


Assuntos
Acrilamida , Aminoácidos , Impressão Tridimensional , Polímeros , Fenilalanina
2.
Polymers (Basel) ; 11(1)2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30960122

RESUMO

Novel composite coatings prepared from 3,4-epoxy cyclohexylmethyl 3,4-epoxycyclohexane carboxylate (ECC) and different ceramic fillers have been prepared to improve the thermal dissipation of electronic devices. As latent cationic initiator, a benzylanilinium salt with triethanolamine has been used, which leads to a polyether matrix. Different proportions of Al2O3, AlN and SiC as fillers were added to the reactive formulation. The effect of the fillers selected and their proportions on the evolution of the curing was studied by calorimetry and rheometry. The thermal conductivity, thermal stability, thermal expansion coefficient and thermomechanical and mechanical properties of the composites were evaluated. An improvement of 820% in thermal conductivity in reference to the neat material was reached with a 75 wt % of AlN, whereas glass transition temperatures higher than 200 °C were determined in all the composites.

3.
Polymers (Basel) ; 10(3)2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30966312

RESUMO

In this work, the effect of the addition of boron nitride (BN) fillers in a thiol-cycloaliphatic epoxy formulation has been investigated. Calorimetric studies put into evidence that the kinetics of the curing has been scarcely affected and that the addition of particles does not affect the final structure of the network. Rheologic studies have shown the increase in the viscoelastic properties on adding the filler and allow the percolation threshold to be calculated, which was found to be 35.5%. The use of BN agglomerates of bigger size increases notably the viscosity of the formulation. Glass transition temperatures are not affected by the filler added, but Young's modulus and hardness have been notably enhanced. Thermal conductivity of the composites prepared shows a linear increase with the proportion of BN particle sheets added, reaching a maximum of 0.97 W/K·m. The addition of 80 µm agglomerates, allowed to increase this value until 1.75 W/K·m.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA