RESUMO
The discovery of CTLA-4 and PD-1 checkpoints has prompted scientific researchers and the pharmaceutical industry to develop and conduct extensive research on tumor-specific inhibitors. As a result, the list of potential immune checkpoint molecules is growing over time. Receptors for nectin and nectin-like proteins have recently emerged as promising targets for cancer immunotherapy. Potential immune checkpoints, including CD226, TIGIT, and CD96, belong to this receptor class. Among them, CD96 has received little attention. In this mini-review, we aim to discuss the basic biology of CD96 as well as the most recent relevant research on this as a promising candidate for cancer immunotherapy.
Assuntos
Antígenos CD , Neoplasias , Humanos , Antígenos CD/metabolismo , Imunoterapia , Células Matadoras Naturais , Nectinas/metabolismo , Neoplasias/metabolismoRESUMO
Rationale: Postoperative ileus (POI) is a frequent complication arising after gastrointestinal surgery but pathogenesis of POI is still not fully understood. While Th1 immune cells are implicated in POI, the involvement of Th2 cells has not yet been clarified. Given the impact of reactive oxygen species (ROS) in the regulation of Th1 and Th2 balance, we hypothesized that not only Th1 but also Th2 immune response can be involved in the development of experimental POI. Methods: The intestinal transit test was performed using carbon gum arabic. Electron microscopy was employed to assess tissue morphology and the presence of immune cells. Cytokines, IgE and ROS were measured. Immune cells from Peyer's patches were analyzed by Flow Cytometry and toluidine blue staining was used for detection of mast cells. Transcriptional factors were analyzed by Western blot. Results: POI is associated with an increase in both Th2 cytokines and Th2 cells. We have further demonstrated that POI induces a Th2-dependent activation of memory and non-memory B cells. This was accompanied by an increase in a number of mast cells in the colon of POI mice as well by an increased IgE and histamine plasma levels. We found that POI-induced accumulation of ROS was associated with an increased expression of the transcriptional factors HMBGI, NF-κB, and p38. This increased expression seemed to be associated with a Th2 response. Conclusion: Th2 immune response can be involved in the activation of mast cells in POI, which was associated with ROS mediated activation of NF-κB and p38 MAPK signaling pathway.
Assuntos
Procedimentos Cirúrgicos do Sistema Digestório/efeitos adversos , Íleus/imunologia , Complicações Pós-Operatórias/imunologia , Células Th2/imunologia , Animais , Comunicação Celular/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Íleus/sangue , Sistema de Sinalização das MAP Quinases/imunologia , Masculino , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos , NF-kappa B/metabolismo , Complicações Pós-Operatórias/sangue , Espécies Reativas de Oxigênio/metabolismo , Células Th1/imunologia , Células Th2/metabolismoRESUMO
BACKGROUND/AIMS: The extracellular ecto-5'-nucleotidase (CD73) is involved in the production of immunosuppressive adenosin (Ado), which can influence different immune cells through the specific adenosine receptors. The main aim of this work was to characterize immune cell populations as well as serum cytokine level in healthy CD73-deficient mice compared to healthy wild-type animals. METHODS: Profound immnophenotyping of splenocytes from healthy CD73-deficient and wild-type mice was done using flow cytometry (FACS analysis). Cytokine measurement in the serum of the animals was carried out with a Bio-Plex assay. RESULTS: The CD73-deficience leads to an increase in a percentage of NK cells and pDC, as well as influences expression of the costimulatory molecules CD80 and CD86. The knockout mice in opposite to wild-type animals show high amount of effector CD4+ T-cells in the spleens. No changes have been found in the subpopulations of CD8+ T-cells. Besides, CD73-deficience leads to a decrease in the percentage of regulatory T cells. Compared with the wild-type animals we found that CD73 knockout mice possess low serum concentration of IL-6. CONCLUSION: This in vivo study clear demonstrated certain immunological changes in the CD73-deficient mice and thus immunoregulatory potential of CD73 molecule. This makes this extracellular enzyme to a real immune check point molecule, attractive for further investigations and clinical studies.
Assuntos
5'-Nucleotidase/deficiência , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Células Matadoras Naturais/imunologia , Baço/imunologia , 5'-Nucleotidase/imunologia , Animais , Antígeno B7-1/genética , Antígeno B7-1/imunologia , Antígeno B7-2/genética , Antígeno B7-2/imunologia , Células Dendríticas/patologia , Interleucina-6/genética , Interleucina-6/imunologia , Células Matadoras Naturais/patologia , Camundongos , Camundongos Knockout , Baço/patologiaRESUMO
BACKGROUND/AIMS: Retinoid receptors and retinoic acid were reported to be down-regulated in pancreatic duct adenocarcinoma (PDAC) compared to normal pancreas. Yet the mechanism of the down-regulation of retinoid receptors is not well defined. The aim of this study was to find out whether selected dysregulated miRNAs in PDAC are responsible for the decreased level of retinoid receptors. METHODS: Bioinformatics, real-time PCR, western blot analysis as well as molecular manipulation with miRNA in cells of PDAC were carried out. RESULTS: We first performed bioinformatics research to identify conserved target sequences for deregulated miRNAs within the 3'UTR region of retinoid receptor mRNA. This research revealed binding sites for miR-138, -27a, -27b, -206, -613, -9-5p, -27a/b-3p and -27a. Next, we investigated the expression of selected retinoid receptors and miRNAs in PDAC cell lines and in the Human Pancreatic Duct Epithelial (HPDE) cell line. Further, we investigated the effects of modifying expression levels of selected miRNAs using miRNA inhibitors or mimics. We demonstrated that none of these miRNAs can target the selected retinoid receptors in vitro. CONCLUSIONS: miR-27a, miR-27b, miR-9, miR10a and miR-10b were up-regulated in PDAC cells compared to HPDE cells. The up-regulation of these miRNAs was not responsible for the down-regulation of RARα, RARß, RXRα and RXRß in PDAC cells.
Assuntos
MicroRNAs/metabolismo , Receptores X de Retinoides/metabolismo , Regiões 3' não Traduzidas , Antagomirs/metabolismo , Sequência de Bases , Western Blotting , Linhagem Celular Tumoral , Humanos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores X de Retinoides/genética , Alinhamento de SequênciaRESUMO
ABSTRACT: Pancreatic ductal adenocarcinoma (PDAC) is still a clinical challenge due to its deteriorated prognosis. Therefore, new combination chemotherapeutic approaches are of research interest. In this work, we attempted to characterize the effects of gemcitabine and interferon-alpha as well as the combination of both on the metabolic, pro-apoptotic, and proliferative activity of MiaPaca and Panc-1 cells. We showed that the exposure of both drugs in combination increases effectively the metabolic activity of cells of MiaPaca and Panc-1 cell lines compared to the monotherapies. Based on the data from the analysis of apoptosis, the underlying molecular effect of metabolic and proliferative inhibition is an increase in the number of cells in the early apoptosis. These data can be of interest in the context of future preclinical research.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Proliferação de Células , Gencitabina , Interferon-alfa , Neoplasias Pancreáticas , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Sinergismo Farmacológico , Interferon-alfa/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismoRESUMO
In recent years, the intensive production of nanoparticles with a wide application has led to their transfer to the environment, including the water ecosystem. The accumulation of nanoparticles in fish, causing various pathological changes in the host, raises certain concerns. In the current study, we investigated the penetration and bioaccumulation of Fe3O4 nanoparticles, in the liver of common carp (Cyprinus carpio Linnaeus, 1758). Common carp juveniles were exposed to Fe3O4 nanoparticles at concentrations of 10 and 100 mg. After 7 days, their livers were examined by light and transmission electron microscopes. Compared to normal fish's liver, after using a small concentration (10 mg) of nanoparticles, changes were observed in erythrocytes, hepatocytes, intracellular canaliculi, and bile ducts of the liver. At a high concentration (100 mg), the intensity of changes increased significantly. The liver's capsule was damaged, and a considerable number of hepatocytes were completely destroyed. Additionally, the walls of blood vessels and biliary ductule walls was notably disturbed. It was found that the intensity of pathologies occurring in the liver, increases proportionally with higher concentrations of nanoparticles. Confirmation via electron microscopic methods revealed that Fe3O4 nanoparticles, when administered with food to common carp, enter the fish's liver through erythrocytes localized in the lumen of blood vessels. From there, they traverse through the endothelium of vessels, proceed to hepatocytes, including cytoplasmic organelles, intracellular canaliculi, biliary ductules, and eventually reach the bile ducts. Fe3O4 nanoparticles in all structural elements of fish liver was up to 20 nm. Therefore, high concentrations of nanoparticles in the environment harms the bodies of aquatic organisms, including fish. The changes identified in the liver of common carp in the present study are valuable information in assessing possible risks to other components of the aquatic ecosystem and organisms.
Assuntos
Carpas , Fígado , Poluentes Químicos da Água , Animais , Carpas/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/ultraestrutura , Poluentes Químicos da Água/toxicidade , Microscopia Eletrônica de Transmissão , Nanopartículas Magnéticas de Óxido de Ferro/toxicidadeRESUMO
Immune checkpoint molecule B7-H1 plays a decisive immune regulatory role in different pathologies including cancer, and manipulation of B7-H1 expression became an attractive approach in cancer immunotherapy. Pancreatic cancer (PDAC) is characterized by pronounced immunosuppressive environment and B7-H1 expression correlates with PDAC prognosis. However, the first attempts to diminish B7-H1 expression in patients were not so successful. This points the complicity of PDAC immunosuppressive network and requires further examinations. We investigated the effect of B7-H1 deficiency in PDAC. Our results clearly show that partial or complete B7-H1 inhibition in vivo let to reduced tumor volume and improved survival of PDAC-bearing mice. This oncological benefit is due to the abrogation of immunosuppression provided by MDSC, macrophages, DC and Treg, which resulted in simultaneous restoration of anti-tumor immune response, namely improved accumulation and functionality of effector-memory CD4 and CD8 T cells. Our results underline the potential of B7-H1 molecule to control immunosuppressive network in PDAC and provide new issues for further clinical investigations.
Assuntos
Antígeno B7-H1 , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/terapia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Receptor de Morte Celular Programada 1RESUMO
Unlike traditional cancer therapies, cancer vaccines (CVs) harness a high specificity of the host's immunity to kill tumor cells. CVs can train and bolster the patient's immune system to recognize and eliminate malignant cells by enhancing immune cells' identification of antigens expressed on cancer cells. Various features of antigens like immunogenicity and avidity influence the efficacy of CVs. Therefore, the choice and application of antigens play a critical role in establishing and developing CVs. Tumor-associated antigens (TAAs), a group of proteins expressed at elevated levels in tumor cells but lower levels in healthy normal cells, have been well-studied and developed in CVs. However, immunological tolerance, HLA restriction, and adverse events are major obstacles that threaten TAA-based CVs' efficacy due to the "self-protein" characteristic of TAAs. As "abnormal proteins" that are completely absent from normal cells, tumor-specific antigens (TSAs) can trigger a robust immune response against tumor cells with high specificity and without going through central tolerance, contributing to cancer vaccine development feasibility. In this review, we focus on the unique features of TAAs and TSAs and their application in vaccines, summarizing their performance in preclinical and clinical trials.
RESUMO
One of the most common tumors in the world is hepatocellular carcinoma (HCC), and its mortality rates are still on the rise, so addressing it is considered an important challenge for universal health. Despite the various treatments that have been developed over the past decades, the prognosis for advanced liver cancer is still poor. Recently, tumor immunotherapy has opened new opportunities for suppression of tumor progression, recurrence, and metastasis. Besides this, investigation into this malignancy due to high immune checkpoint expression and the change of immunometabolic programming in immune cells and tumor cells is highly considered. Because anti-cytotoxic T lymphocyte-associated protein (CTLA)-4 antibodies and anti-programmed cell death protein (PD)-1 antibodies have shown therapeutic effects in various cancers, studies have shown that T cell immunoglobulin mucin-3 (TIM-3), a new immune checkpoint molecule, plays an important role in the development of HCC. In this review, we summarize the recent findings on signal transduction events of TIM-3, its role as a checkpoint target for HCC therapy, and the immunometabolic situation in the progression of HCC.
RESUMO
According to the cancer stem cell (CSC) hypothesis, the aggressive growth and early metastasis of pancreatic ductal adenocarcinoma (PDA) is due to the activity of CSCs, which are not targeted by current therapies. Otto Warburg suggested that the growth of cancer cells is driven by a high glucose metabolism. Here, we investigated whether glycolysis inhibition targets CSCs and thus may enhance therapeutic efficacy. Four established and 3 primary PDA cell lines, non-malignant cells, and 3 patient-tumor-derived CSC-enriched spheroidal cultures were analyzed by glucose turnover measurements, MTT and ATP assays, flow cytometry of ALDH1 activity and annexin positivity, colony and spheroid formation, western blotting, electrophoretic mobility shift assay, xenotransplantation, and immunohistochemistry. The effect of siRNA-mediated inhibition of LDH-A and LDH-B was also investigated. The PDA cells exhibited a high glucose metabolism, and glucose withdrawal or LDH inhibition by siRNA prevented growth and colony formation. Treatment with the anti-glycolytic agent 3-bromopyruvate almost completely blocked cell viability, self-renewal potential, NF-κB binding activity, and stem cell-related signaling and reverted gemcitabine resistance. 3-bromopyruvate was less effective in weakly malignant PDA cells and did not affect non-malignant cells, predicting minimal side effects. 3-bromopyruvate inhibited in vivo tumor engraftment and growth on chicken eggs and mice and enhanced the efficacy of gemcitabine by influencing the expression of markers of proliferation, apoptosis, self-renewal, and metastasis. Most importantly, primary CSC-enriched spheroidal cultures were eliminated by 3-bromopyruvate. These findings propose that CSCs may be specifically dependent on a high glucose turnover and suggest 3-bromopyruvate for therapeutic intervention.
Assuntos
Carcinoma Ductal Pancreático/prevenção & controle , Desoxicitidina/análogos & derivados , Glucose/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Pancreáticas/prevenção & controle , Piruvatos/farmacologia , Animais , Antimetabólitos Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Western Blotting , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Embrião de Galinha , Desoxicitidina/farmacologia , Feminino , Glicólise/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Isoenzimas/genética , Isoenzimas/metabolismo , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Camundongos Endogâmicos , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Interferência de RNA , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , GencitabinaRESUMO
The extreme aggressiveness of pancreatic ductal adenocarcinoma (PDA) has been associated with blocked gap junctional intercellular communication (GJIC) and the presence of cancer stem cells (CSCs). We examined whether disturbed GJIC is responsible for a CSC phenotype in established and primary cancer cells and patient tissue of PDA using interdisciplinary methods based in physiology, cell and molecular biology, histology and epigenetics. Flux of fluorescent dyes and gemcitabine through gap junctions (GJs) was intact in less aggressive cells but not in highly malignant cells with morphological dysfunctional GJs. Among several connexins, only Cx43 was expressed on the cell surface of less aggressive and GJIC-competent cells, whereas Cx43 surface expression was absent in highly malignant, E-cadherin-negative and GJIC-incompetent cells. The levels of total Cx43 protein and Cx43 phosphorylated at Ser368 and Ser279/282 were high in normal tissue but low to absent in malignant tissue. si-RNA-mediated inhibition of Cx43 expression in GJIC-competent cells prevented GJIC and induced colony formation and the expression of stem cell-related factors. The bioactive substance sulforaphane enhanced Cx43 and E-cadherin levels, inhibited the CSC markers c-Met and CD133, improved the functional morphology of GJs and enhanced GJIC. Sulforaphane altered the phosphorylation of several kinases and their substrates and inhibition of GSK3, JNK and PKC prevented sulforaphane-induced CX43 expression. The sulforaphane-mediated expression of Cx43 was not correlated with enhanced Cx43 RNA expression, acetylated histone binding and Cx43 promoter de-methylation, suggesting that posttranslational phosphorylation is the dominant regulatory mechanism. Together, the absence of Cx43 prevents GJIC and enhances aggressiveness, whereas sulforaphane counteracts this process, and our findings highlight dietary co-treatment as a viable treatment option for PDA.