Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 34(38): 11534-11543, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30170495

RESUMO

Zinc sulfide (ZnS) nanoparticles (NPs) are particularly interesting materials for their electronic and luminescent properties. Unfortunately, their robust and stable functionalization and stabilization, especially in aqueous media, has represented a challenging and not yet completely accomplished task. In this work, we report the synthesis of colloidally stable, photoluminescent and biocompatible core-polymer shell ZnS and ZnS:Tb NPs by employing a water-in-oil miniemulsion (ME) process combined with surface functionalization via catechol-bearing poly-2-methyl-2-oxazoline (PMOXA) of various molar masses. The strong binding of catechol anchors to the metal cations of the ZnS surface, coupled with the high stability of PMOXA against chemical degradation, enable the formation of suspensions presenting excellent colloidal stability. This feature, combined with the assessed photoluminescence and biocompatibility, make these hybrid NPs suitable for optical bioimaging.


Assuntos
Materiais Biocompatíveis/química , Catecóis/química , Substâncias Luminescentes/química , Nanopartículas/química , Poliaminas/química , Sulfetos/química , Compostos de Zinco/química , Células A549 , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/toxicidade , Catecóis/síntese química , Catecóis/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Humanos , Luminescência , Substâncias Luminescentes/síntese química , Substâncias Luminescentes/toxicidade , Nanopartículas/toxicidade , Poliaminas/síntese química , Poliaminas/toxicidade , Sulfetos/toxicidade , Térbio/química , Compostos de Zinco/toxicidade
2.
Antioxidants (Basel) ; 12(9)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37760059

RESUMO

Encapsulation is a valuable strategy to protect and deliver anthocyanins (ACNs), phenolic compounds with outstanding antioxidant capacity but limited stability. In this study, coacervation was used to encapsulate an ACN-rich red cabbage extract (RCE). Two agri-food by-product polymers, whey protein isolate (WPI) and apple high-methoxyl pectin (HMP), were blended at pH 4.0 in a specific ratio to induce the formation of nanoparticles (NPs). The process optimisation yielded a monodispersed population (PDI < 0.200) of negatively charged (-17 mV) NPs with an average diameter of 380 nm. RCE concentration influenced size, charge, and antioxidant capacity in a dose-dependent manner. NPs were also sensitive to pH increases from 4 to 7, showing a progressive breakdown. The encapsulation efficiency was 30%, with the retention of ACNs within the polymeric matrix being influenced by their chemical structure: diacylated and/or C3-triglucoside forms were more efficiently encapsulated than monoacylated C3-diglucosides. In conclusion, we report a promising, simple, and sustainable method to produce monodispersed NPs for ACN encapsulation and delivery. Evidence of differential binding of ACNs to NPs, dependent on specific acylation/glycosylation patterns, indicates that care must be taken in the choice of the appropriate NP formulation for the encapsulation of phenolic compounds.

3.
ACS Appl Mater Interfaces ; 14(25): 28924-28935, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35713483

RESUMO

Noble metal nanoparticles are efficient converters of light into heat but typically cover a limited spectral range or have intense light scattering, resulting in unsuited for broadband thermoplasmonic applications and sunlight-driven heat generation. Here, Au-Ag alloy nanoparticles were deliberately molded with an irregular nanocoral (NC) shape to obtain broadband plasmon absorption from the visible to the near-infrared yet at a lower cost compared to pure Au nanostructures. The Au-Ag NCs are produced through a green and scalable methodology that relies on pulsed laser fragmentation in a liquid, without chemicals or capping molecules, leaving the particles surface free for conjugation with thiolated molecules and enabling full processability and easy inclusion in various matrixes. Numerical calculations showed that panchromism, i.e., the occurrence of a broadband absorption from the visible to the near-infrared region, is due to the special morphology of Au-Ag alloy NCs and consists of a purely absorptive behavior superior to monometallic Au or Ag NCs. The thermoplasmonic properties were assessed by multiwavelength light-to-heat conversion experiments and exploited for the realization of a cellulose-based solar-steam generation device with low-cost, simple design but competitive performances. Overall, here it is shown how laser light can be used to harvest solar light. Besides, the optimized broadband plasmon absorption, the green synthetic procedure, and the other set of positive features for thermoplasmonic applications of Au-Ag NCs will contribute to the development of environmentally friendly devices of practical utility in a sustainable world.

4.
J Appl Crystallogr ; 55(Pt 4): 953-965, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35974734

RESUMO

Transmission electron microscopy is a powerful experimental tool, very effective for the complete characterization of nanocrystalline materials by employing a combination of imaging, spectroscopy and diffraction techniques. Electron powder diffraction (EPD) pattern fingerprinting in association with chemical information from spectroscopy can be used to deduce the identity of the crystalline phases. Furthermore, EPD has similar potential to X-ray powder diffraction (XRPD) for extracting additional information regarding material specimens, such as microstructural features and defect structures. The aim of this paper is to extend a full-pattern fitting procedure, broadly used for analysing XRPD patterns, to EPD. The interest of this approach is twofold: in the first place, the relatively short times involved with data acquisition allow one to speed up the characterization procedures. This is a particularly interesting aspect in the case of metastable structures or kinetics studies. Moreover, the reduced sampling volumes involved with electron diffraction analyses can better reveal surface alteration layers in the analysed specimen which might be completely overlooked by conventional bulk techniques. The first step forward to have an effective application of the proposed methodology concerns establishing a reliable calibration protocol to take into correct account the instrumental effects and thus separate them from those determined by the structure, microstructure and texture of the analysed samples. In this paper, the methodology for determining the instrumental broadening of the diffraction lines is demonstrated through a full quantitative analysis based on the Rietveld refinement of the EPD. In this regard, a CeO2 nanopowder reference specimen has been used. The results provide indications also on the specific features that a good calibration standard should have.

5.
Ultramicroscopy ; 230: 113365, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34358961

RESUMO

A new methodology has been developed to prepare electron microscopy, both SEM and TEM, specimens starting from particulate matter collected using environmental sampling systems. The approach is based on the extraction of the particles to be analyzed from the harvesting substrates. The extracted particles can be directly observed in an SEM, possibly in low-vacuum mode to prevent electrical charging. In order to prepare electron transparent samples, TEM observations require a further step, consisting in embedding the particles in an electron transparent carbon film deposited before dissolving the acetate extracting substrate. The protocol has been tested by analyzing particles collected during bench tests on brake pads and discs, carried out on a dynamometer equipped with a particulate matter sampling apparatus. The main advantages of the approach are: the complete extraction of the particulate matter specimens from the original substrates, that in this way do not interfere with the analyses; the extracted samples retain the topological information of the collection in the specimens prepared for SEM; possibility to be applied to any kind of particulate matter harvesting substrates.


Assuntos
Material Particulado , Microscopia Eletrônica , Microscopia Eletrônica de Varredura , Material Particulado/análise
6.
Nanomaterials (Basel) ; 10(3)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143523

RESUMO

Porous silicon (pSi) microparticles obtained by porosification of crystalline silicon wafers have unique optical properties that, together with biodegradability, biocompatibility and absence of immunogenicity, are fundamental characteristics to candidate them as tracers in optical imaging techniques and as drug carriers. In this work, we focus on the possibility to track down the pSi microparticles also by MRI (magnetic resonance imaging), thus realizing a comprehensive tool for theranostic applications, i.e., the combination of therapy and diagnostics. We have developed and tested an easy, quick and low-cost protocol to infiltrate the COOH-functionalized pSi microparticles pores (tens of nanometers about) with magnetic nanospheres (SPIONs-Super Paramagnetic Iron Oxide Nanoparticles, about 5-7 nm) and allow an electrostatic interaction. The structural properties and the elemental composition were investigated by electron microscopy techniques coupled to elemental analysis to demonstrate the effective attachment of the SPIONs along the pores' surface of the pSi microparticles. The magnetic properties were investigated under an external magnetic field to determine the relaxivity properties of the material and resulting in an alteration of the relaxivity of water due to the SPIONs presence, clearly demonstrating the effectiveness of the easy functionalization protocol proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA