Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev E ; 109(6-1): 064601, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39020999

RESUMO

Brownian dynamics simulations are utilized to study segregation phenomena far from thermodynamic equilibrium. In the present study, we expand upon the analysis of binary colloid mixtures and introduce a third particle species to further our understanding of colloidal systems. Gravitationally driven, spherical colloids immersed in an implicit solvent are confined in two-dimensional linear microchannels. The interaction between the colloids is modeled by the Weeks-Chandler-Andersen potential, and the confinement of the colloids is realized by hard walls based on the solution of the Smoluchowski equation in half space. In binary and ternary colloidal systems, a difference in the driving force is achieved by differing colloid sizes but fixed mass density. We observe for both the binary and ternary systems that a driving force difference induces a nonequilibrium phase transition to lanes. For ternary systems, we study the tendency of lane formation to depend on the diameter of the medium-sized colloids. Here we find a sweet spot for lane formation in ternary systems. Furthermore, we study the interaction of two differently sized colloids at the channel walls. Recently we observed that driven large colloids push smaller colloids to the walls. This results in small particle lanes at the walls at early simulation times. In this work we additionally find that thin lanes are unstable and dissolve over very long time frames. Furthermore, we observe a connection between lane formation and the nonuniform distribution of particles along the channel length. This nonuniform distribution occurs either alongside lane formation or in shared lanes (i.e., lanes consisting of two colloid types).

2.
Phys Rev E ; 108(3-1): 034607, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37849083

RESUMO

We investigate the lane formation in nonequilibrium systems of colloidal particles moving in parallel that are driven by the force of gravity. For this setup, an experimental implementation of a channel on a slope can be conceptualized. We employ the Brownian dynamics algorithm and confine the repulsive particles with hard walls based on the solution of the Smoluchowski equation in the half space. A difference of the driving force acting on the colloids could be achieved by using two spherical particle types with differing diameters but equal mass density. First, we investigate how a difference in the channel slope affects the lane formation of the systems, after which we analyze the lanes that formed. We find that the large particles push the small particles to the walls, resulting in exclusively small particle lanes at the walls. This contrasts the equilibrium state, where depletion forces push the larger particles to the walls. Additionally, we have a closer look at the mechanisms by which the lanes form. Finally, we find system parameter values that foster lane formation to lay the foundation for an experimental realization of our proposed setup. To round this off, we give an exemplary calculation of the slope angle needed to get the experimental system into a state of lane order. With the examination of lane order in systems that are driven in parallel, we hope to deepen our understanding of nonequilibrium order phenomena.

3.
Phys Rev E ; 106(2-1): 024606, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36109916

RESUMO

We study the segregation phenomena for oppositely driven colloidal particles in two-dimensional ring geometries by means of Brownian dynamics simulations without hydrodynamic interactions. The particles interact via a repulsive Yukawa potential and are confined to a two-dimensional circular channel by hard walls, in which half of the particles are driven clockwise and the other half are driven counterclockwise. In addition to lane formation, which is commonly found in oppositely driven systems, we found band formation along the angular direction in channels with a very large radius. This indicates that a formation of lanes is prevented in the limit of channels with an infinitely large inner radius. The dependency of this segregation has been examined for the two control parameters, the interaction strength between the particles and the width of the circular channel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA