Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Neural Eng ; 20(2)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36863013

RESUMO

Objective.Transcranial magnetic stimulation (TMS) is a non-invasive technique widely used for neuromodulation. Animal models are essential for investigating the underlying mechanisms of TMS. However, the lack of miniaturized coils hinders the TMS studies in small animals, since most commercial coils are designed for humans and thus incapable of focal stimulation in small animals. Furthermore, it is difficult to perform electrophysiological recordings at the TMS focal point using conventional coils.Approach.We designed, fabricated, and tested a novel miniaturized TMS coil (4-by-7 mm) that consisted of a C-shaped iron powder core and insulated copper wires (30 turns). The resulting magnetic and electric fields were characterized with experimental measurements and finite element modeling. The efficacy of this coil in neuromodulation was validated with electrophysiological recordings of single-unit activities (SUAs), somatosensory evoked potentials (SSEPs), and motor evoked potentials (MEPs) in rats (n= 32) following repetitive TMS (rTMS; 3 min, 10 Hz).Main results.This coil could generate a maximum magnetic field of 460 mT and an electric field of 7.2 V m-1in the rat brain according to our simulations. With subthreshold rTMS focally delivered over the sensorimotor cortex, mean firing rates of primary somatosensory and motor cortical neurons significantly increased (154±5% and 160±9% from the baseline level, respectively); MEP and SSEP amplitude significantly increased (136±9%) and decreased (74±4%), respectively.Significance.This miniaturized C-shaped coil enabled focal TMS and concurrent electrophysiological recording/stimulation at the TMS focal point. It provided a useful tool to investigate the neural responses and underlying mechanisms of TMS in small animal models. Using this paradigm, we for the first time observed distinct modulatory effects on SUAs, SSEPs, and MEPs with the same rTMS protocol in anesthetized rats. These results suggested that multiple neurobiological mechanisms in the sensorimotor pathways were differentially modulated by rTMS.


Assuntos
Córtex Motor , Estimulação Magnética Transcraniana , Humanos , Ratos , Animais , Estimulação Magnética Transcraniana/métodos , Roedores , Córtex Motor/fisiologia , Potencial Evocado Motor/fisiologia , Potenciais Somatossensoriais Evocados
2.
Front Neurosci ; 16: 998704, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340783

RESUMO

Cortical oscillations within or across brain regions play fundamental roles in sensory, motor, and memory functions. It can be altered by neuromodulations such as repetitive transcranial magnetic stimulation (rTMS) and pharmacological manipulations such as ketamine. However, the neurobiological basis of the effects of rTMS and ketamine, as well as their interactions, on cortical oscillations is not understood. In this study, we developed and applied a rodent model that enabled simultaneous rTMS treatment, pharmacological manipulations, and invasive electrophysiological recordings, which is difficult in humans. Specifically, a miniaturized C-shaped coil was designed and fabricated to deliver focal subthreshold rTMS above the primary somatosensory (S1) and motor (M1) cortex in rats. Multi-electrode arrays (MEA) were implanted to record local field potentials (LFPs) and single unit activities. A novel form of synchronized activities, poly population spikes (PPS), was discovered as the biomarker of ketamine in LFPs. Brief subthreshold rTMS effectively and reversibly suppressed PPS while increasing the firing rates of single unit activities. These results suggest that ketamine and rTMS have convergent but opposing effects on cortical oscillations and circuits. This highly robust phenomenon has important implications to understanding the neurobiological mechanisms of rTMS and ketamine as well as developing new therapeutic strategies involving both neuromodulation and pharmacological agents.

3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6318-6321, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892558

RESUMO

Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive technique for neuromodulation. Even at low intensities, rTMS can alter the structure and function of neural circuits; yet the underlying mechanism remains unclear. Here we report a new experimental paradigm for studying the effect of low intensity rTMS (LI-rTMS) on single neuron spiking activities in the sensorimotor cortex of anesthetized rats. We designed, built, and tested a miniaturized TMS coil for use on small animals such as rats. The induced electric field in different 3D locations was measured along different directions using a dipole probe. A maximum electric field strength of 2.3 V/m was achieved. LI-rTMS (10 Hz, 3 min) was delivered to the rat primary motor and somatosensory cortices. Single-unit activities were recorded before and after LI-rTMS. Results showed that LI-rTMS increased the spontaneous firing rates of primary motor and somatosensory cortical neurons. Diverse modulatory patterns were observed in different neurons. These results indicated the feasibility of using miniaturized coil in rodents as an experimental platform for evaluating the effect of LI-rTMS on the brain and developing therapeutic strategies for treating neurological disorders.


Assuntos
Encéfalo , Estimulação Magnética Transcraniana , Animais , Ratos , Córtex Somatossensorial , Tronco
4.
Brain Topogr ; 23(2): 134-8, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19802727

RESUMO

The aim of this work is to study the coherence profile (dependence) of robust eyes-closed resting EEG sources isolated by group blind source separation (gBSS). We employ a test-retest strategy using two large sample normative databases (N = 57 and 84). Using a BSS method in the complex Fourier domain, we show that we can rigourously study the out-of-phase dependence of the extracted components, albeit they are extracted so as to be in-phase independent (by BSS definition). Our focus on lagged communication between components effectively yields dependence measures unbiased by volume conduction effects, which is a major concern about the validity of any dependence measures issued by EEG measurements. We are able to show the organization of the extracted components in two networks. Within each network components oscillate coherently with multiple-frequency dynamics, whereas between networks they exchange information at non-random multiple time-lag rates.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador , Adolescente , Adulto , Algoritmos , Bases de Dados como Assunto , Análise de Fourier , Humanos , Vias Neurais/fisiologia , Periodicidade , Descanso , Adulto Jovem
5.
Front Neurosci ; 12: 595, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233291

RESUMO

The goal of this study is to identify the quantitative electroencephalographic (qEEG) signature of early childhood malnutrition [protein-energy malnutrition (PEM)]. To this end, archival digital EEG recordings of 108 participants in the Barbados Nutrition Study (BNS) were recovered and cleaned of artifacts (46 children who suffered an episode of PEM limited to the first year of life) and 62 healthy controls). The participants of the still ongoing BNS were initially enrolled in 1973, and EEGs for both groups were recorded in 1977-1978 (at 5-11 years). Scalp and source EEG Z-spectra (to correct for age effects) were obtained by comparison with the normative Cuban Human Brain Mapping database. Differences between both groups in the z spectra (for all electrode locations and frequency bins) were assessed by t-tests with thresholds corrected for multiple comparisons by permutation tests. Four clusters of differences were found: (a) increased theta activity (3.91-5.86 Hz) in electrodes T4, O2, Pz and in the sources of the supplementary motor area (SMA); b) decreased alpha1 (8.59-8.98 Hz) in Fronto-central electrodes and sources of widespread bilateral prefrontal are; (c) increased alpha2 (11.33-12.50 Hz) in Temporo-parietal electrodes as well as in sources in Central-parietal areas of the right hemisphere; and (d) increased beta (13.67-18.36 Hz), in T4, T5 and P4 electrodes and decreased in the sources of bilateral occipital-temporal areas. Multivariate Item Response Theory of EEGs scored visually by experts revealed a neurophysiological latent variable which indicated excessive paroxysmal and focal abnormality activity in the PEM group. A robust biomarker construction procedure based on elastic-net regressions and 1000-cross-validations was used to: (i) select stable variables and (ii) calculate the area under ROC curves (AUC). Thus, qEEG differentiate between the two nutrition groups (PEM vs Control) performing as well as visual inspection of the EEG scored by experts (AUC = 0.83). Since PEM is a global public health problem with lifelong neurodevelopmental consequences, our finding of consistent differences between PEM and controls, both in qualitative and quantitative EEG analysis, suggest that this technology may be a source of scalable and affordable biomarkers for assessing the long-term brain impact of early PEM.

6.
Int J Psychophysiol ; 104: 44-52, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27108364

RESUMO

OBJECTIVE: The aim of our study is to examine quantitative Electroencephalogram (QEEG) differences between ADHD patients that are responders and non-responders to long-term treatment with Atomoxetine at baseline and after 6 and 12months of treatment. Patients with attention deficit hyperactivity disorder (ADHD) received atomoxetine titrated, over 7days, from 0.5 to 1.2mg/kg/day. QEEG and Swanson, Nolan, and Pelham-IV Questionnaire (SNAP-IV) scores were recorded before treatment and after therapy. METHODS: Twenty minutes of eyes closed resting EEG was recorded from 19 electrodes referenced to linked earlobes. Full frequency and narrow band spectra of two minutes of artifact-free EEG were computed as well as source localization using Variable Resolution Electrical Tomography (VARETA). Abnormalities were identified using Z-spectra relative to normative values. RESULTS: Patients were classified as responders, non-responders and partial responders based upon the SNAP-IV findings. At baseline, the responders showed increased absolute power in alpha and delta in frontal and temporal regions, whereas, non-responders showed increased absolute power in all frequency bands that was widely distributed. With treatment responders' absolute power values moved toward normal values, whereas, non-responders remained at baseline values. CONCLUSIONS: Patients with increased power in the alpha band with no evidence of alterations in the beta or theta range, might be responders to treatment with atomoxetine. Increased power in the beta band coupled with increased alpha seems to be related to non-responders and one should consider atomoxetine withdrawal, especially if there is persistence of increased alpha and beta accompanied by an increase of theta.


Assuntos
Inibidores da Captação Adrenérgica/uso terapêutico , Cloridrato de Atomoxetina/uso terapêutico , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Mapeamento Encefálico , Ondas Encefálicas/efeitos dos fármacos , Adolescente , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Criança , Eletroencefalografia , Eletromiografia , Feminino , Humanos , Estudos Longitudinais , Masculino , Escalas de Graduação Psiquiátrica , Inquéritos e Questionários , Fatores de Tempo
7.
Neuroimage ; 39(3): 1257-65, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18024085

RESUMO

This preliminary study sought to localize epileptogenic regions in patients with partial epilepsy by analysis of interictal EEG activity utilizing variable resolution electromagnetic tomography (VARETA), a three-dimensional quantitative electroencephalographic (QEEG) frequency-domain distributed source modeling technique. The very narrow band (VNB) spectra spanned the frequency range 0.39 Hz to 19.1 Hz, in 0.39 Hz steps. These VNB spectra were compared to normative data and transformed to provide Z-scores for every scalp derivation, and the spatial distributions of the probable EEG generators of the most abnormal values were displayed on slices from a probabilistic MRI atlas. Each voxel was color-coded to represent the significance of the deviation relative to age appropriate normative values. We compared the resulting three-dimensional images to the localization of epileptogenic regions based on invasive intracranial EEG recordings of seizure onsets. The VARETA image indicated abnormal interictal spectral power values in regions of seizure onset identified by invasive monitoring, mainly in delta and theta range (1.5 to 8.0 Hz). The VARETA localization of the most abnormal voxel was congruent with the epileptogenic regions identified by intracranial recordings with regard to hemisphere in all 6 cases, and with regard to lobe in 5 cases. In contrast, abnormal findings with routine EEG agreed with invasive monitoring with regard to hemisphere in 3 cases and with regard to lobe in 2 cases. These results suggest that analysis of background interictal EEG utilizing distributed source models should be investigated further in clinical epilepsy.


Assuntos
Eletroencefalografia/estatística & dados numéricos , Epilepsias Parciais/patologia , Adulto , Algoritmos , Mapeamento Encefálico , Feminino , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Reprodutibilidade dos Testes , Convulsões/patologia
8.
Neuroimage ; 16(1): 41-8, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11969316

RESUMO

Most studies of continuous EEG data have used frequency transformation, which allows the quantification of brain states that vary over seconds. For the analysis of shorter, transient EEG events, it is possible to identify and quantify brain electric microstates as subsecond time epochs with stable field topography. These microstates may correspond to basic building blocks of human information processing. Microstate analysis yields a compact and comprehensive repertoire of short lasting classes of brain topographic maps, which may be considered to reflect global functional states. Each microstate class is described by topography, mean duration, frequency of occurrence and percentage analysis time occupied. This paper presents normative microstate data for resting EEG obtained from a database of 496 subjects between the age of 6 and 80 years. The extracted microstate variables showed a lawful, complex evolution with age. The pattern of changes with age is compatible with the existence of developmental stages as claimed by developmental psychologists. The results are discussed in the framework of state dependent information processing and suggest the existence of biologically predetermined top-down processes that bias brain electric activity to functional states appropriate for age-specific learning and behavior.


Assuntos
Eletroencefalografia/estatística & dados numéricos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Criança , Cognição/fisiologia , Bases de Dados Factuais , Eletrofisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valores de Referência , Reprodutibilidade dos Testes , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA