RESUMO
Muscle atrophy and functional decline (sarcopenia) are common manifestations of frailty and are critical contributors to morbidity and mortality in older people1. Deciphering the molecular mechanisms underlying sarcopenia has major implications for understanding human ageing2. Yet, progress has been slow, partly due to the difficulties of characterizing skeletal muscle niche heterogeneity (whereby myofibres are the most abundant) and obtaining well-characterized human samples3,4. Here we generate a single-cell/single-nucleus transcriptomic and chromatin accessibility map of human limb skeletal muscles encompassing over 387,000 cells/nuclei from individuals aged 15 to 99 years with distinct fitness and frailty levels. We describe how cell populations change during ageing, including the emergence of new populations in older people, and the cell-specific and multicellular network features (at the transcriptomic and epigenetic levels) associated with these changes. On the basis of cross-comparison with genetic data, we also identify key elements of chromatin architecture that mark susceptibility to sarcopenia. Our study provides a basis for identifying targets in the skeletal muscle that are amenable to medical, pharmacological and lifestyle interventions in late life.
Assuntos
Envelhecimento , Músculo Esquelético , Análise de Célula Única , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Envelhecimento/genética , Envelhecimento/patologia , Envelhecimento/fisiologia , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromatina/genética , Suscetibilidade a Doenças , Epigênese Genética , Fragilidade/genética , Fragilidade/patologia , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Sarcopenia/genética , Sarcopenia/patologia , TranscriptomaRESUMO
Progenitors of the first hematopoietic cells in the mouse arise in the early embryo from Brachyury-positive multipotent cells in the posterior-proximal region of the epiblast, but the mechanisms that specify primitive blood cells are still largely unknown. Pluripotency factors maintain uncommitted cells of the blastocyst and embryonic stem cells in the pluripotent state. However, little is known about the role played by these factors during later development, despite being expressed in the postimplantation epiblast. Using a dual transgene system for controlled expression at postimplantation stages, we found that Nanog blocks primitive hematopoiesis in the gastrulating embryo, resulting in a loss of red blood cells and downregulation of erythropoietic genes. Accordingly, Nanog-deficient embryonic stem cells are prone to erythropoietic differentiation. Moreover, Nanog expression in adults prevents the maturation of erythroid cells. By analysis of previous data for NANOG binding during stem cell differentiation and CRISPR/Cas9 genome editing, we found that Tal1 is a direct NANOG target. Our results show that Nanog regulates primitive hematopoiesis by directly repressing critical erythroid lineage specifiers.
Assuntos
Linhagem da Célula , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/citologia , Hematopoese , Proteína Homeobox Nanog/fisiologia , Células-Tronco Pluripotentes/citologia , Proteína 1 de Leucemia Linfocítica Aguda de Células T/metabolismo , Animais , Diferenciação Celular , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Células-Tronco Embrionárias/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Transgênicos , Células-Tronco Pluripotentes/metabolismo , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genéticaRESUMO
RATIONALE: The molecular mechanisms underlying the formation of coronary arteries during development and during cardiac neovascularization after injury are poorly understood. However, a detailed description of the relevant signaling pathways and functional TFs (transcription factors) regulating these processes is still incomplete. OBJECTIVE: The goal of this study is to identify novel cardiac transcriptional mechanisms of coronary angiogenesis and vessel remodeling by defining the molecular signatures of coronary vascular endothelial cells during these complex processes. METHODS AND RESULTS: We demonstrate that Nes-gfp and Nes-CreERT2 transgenic mouse lines are novel tools for studying the emergence of coronary endothelium and targeting sprouting coronary vessels (but not ventricular endocardium) during development. Furthermore, we identify Sox17 as a critical TF upregulated during the sprouting and remodeling of coronary vessels, visualized by a specific neural enhancer from the Nestin gene that is strongly induced in developing arterioles. Functionally, genetic-inducible endothelial deletion of Sox17 causes deficient cardiac remodeling of coronary vessels, resulting in improper coronary artery formation. CONCLUSIONS: We demonstrated that Sox17 TF regulates the transcriptional activation of Nestin's enhancer in developing coronary vessels while its genetic deletion leads to inadequate coronary artery formation. These findings identify Sox17 as a critical regulator for the remodeling of coronary vessels in the developing heart.
Assuntos
Vasos Coronários/metabolismo , Células Endoteliais/metabolismo , Proteínas HMGB/metabolismo , Neovascularização Fisiológica , Nestina/metabolismo , Fatores de Transcrição SOXF/metabolismo , Remodelação Vascular , Animais , Linhagem da Célula , Células Cultivadas , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Vasos Coronários/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas HMGB/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfogênese , Nestina/genética , Fatores de Transcrição SOXF/genética , Transcrição Gênica , Ativação Transcricional , TranscriptomaRESUMO
Hematopoietic stem and progenitor cells (HSPCs) and leukocytes circulate between the bone marrow (BM) and peripheral blood following circadian oscillations. Autonomic sympathetic noradrenergic signals have been shown to regulate HSPC and leukocyte trafficking, but the role of the cholinergic branch has remained unexplored. We have investigated the role of the cholinergic nervous system in the regulation of day/night traffic of HSPCs and leukocytes in mice. We show here that the autonomic cholinergic nervous system (including parasympathetic and sympathetic) dually regulates daily migration of HSPCs and leukocytes. At night, central parasympathetic cholinergic signals dampen sympathetic noradrenergic tone and decrease BM egress of HSPCs and leukocytes. However, during the daytime, derepressed sympathetic noradrenergic activity causes predominant BM egress of HSPCs and leukocytes via ß3-adrenergic receptor. This egress is locally supported by light-triggered sympathetic cholinergic activity, which inhibits BM vascular cell adhesion and homing. In summary, central (parasympathetic) and local (sympathetic) cholinergic signals regulate day/night oscillations of circulating HSPCs and leukocytes. This study shows how both branches of the autonomic nervous system cooperate to orchestrate daily traffic of HSPCs and leukocytes.
Assuntos
Movimento Celular , Colinérgicos/farmacologia , Ritmo Circadiano , Células-Tronco Hematopoéticas/fisiologia , Leucócitos/fisiologia , Sistema Nervoso Parassimpático/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/fisiologia , Adesão Celular , Células Cultivadas , Quimiotaxia , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Feminino , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Leucócitos/citologia , Leucócitos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Adrenérgicos beta 2 , Receptores Adrenérgicos beta 3/fisiologia , Receptores Acoplados a Proteínas G/fisiologiaRESUMO
Myeloproliferative neoplasms (MPNs) are diseases caused by mutations in the haematopoietic stem cell (HSC) compartment. Most MPN patients have a common acquired mutation of Janus kinase 2 (JAK2) gene in HSCs that renders this kinase constitutively active, leading to uncontrolled cell expansion. The bone marrow microenvironment might contribute to the clinical outcomes of this common event. We previously showed that bone marrow nestin(+) mesenchymal stem cells (MSCs) innervated by sympathetic nerve fibres regulate normal HSCs. Here we demonstrate that abrogation of this regulatory circuit is essential for MPN pathogenesis. Sympathetic nerve fibres, supporting Schwann cells and nestin(+) MSCs are consistently reduced in the bone marrow of MPN patients and mice expressing the human JAK2(V617F) mutation in HSCs. Unexpectedly, MSC reduction is not due to differentiation but is caused by bone marrow neural damage and Schwann cell death triggered by interleukin-1ß produced by mutant HSCs. In turn, in vivo depletion of nestin(+) cells or their production of CXCL12 expanded mutant HSC number and accelerated MPN progression. In contrast, administration of neuroprotective or sympathomimetic drugs prevented mutant HSC expansion. Treatment with ß3-adrenergic agonists that restored the sympathetic regulation of nestin(+) MSCs prevented the loss of these cells and blocked MPN progression by indirectly reducing the number of leukaemic stem cells. Our results demonstrate that mutant-HSC-driven niche damage critically contributes to disease manifestation in MPN and identify niche-forming MSCs and their neural regulation as promising therapeutic targets.
Assuntos
Células-Tronco Hematopoéticas/patologia , Transtornos Mieloproliferativos/patologia , Neoplasias/patologia , Fibras Nervosas/patologia , Nicho de Células-Tronco , Sistema Nervoso Simpático/patologia , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Agonistas de Receptores Adrenérgicos beta 3/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Progressão da Doença , Feminino , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Interleucina-1beta/metabolismo , Janus Quinase 2/genética , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/patologia , Camundongos , Transtornos Mieloproliferativos/tratamento farmacológico , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Fibras Nervosas/efeitos dos fármacos , Nestina/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Receptores Adrenérgicos beta 3/metabolismo , Células de Schwann/efeitos dos fármacos , Células de Schwann/patologia , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/fisiopatologiaRESUMO
The first blood and endothelial cells of amniote embryos appear in close association in the blood islands of the yolk sac (YS). This association and in vitro lineage analyses have suggested a common origin from mesodermal precursors called hemangioblasts, specified in the primitive streak during gastrulation. Fate mapping and chimera studies, however, failed to provide strong evidence for a common origin in the early mouse YS. Additional in vitro studies suggest instead that mesodermal precursors first generate hemogenic endothelium, which then generate blood cells in a linear sequence. We conducted an in vivo clonal analysis to determine the potential of individual cells in the mouse epiblast, primitive streak, and early YS. We found that early YS blood and endothelial lineages mostly derive from independent epiblast populations, specified before gastrulation. Additionally, a subpopulation of the YS endothelium has hemogenic activity and displays characteristics similar to those found later in the embryonic hemogenic endothelium. Our results show that the earliest blood and endothelial cell populations in the mouse embryo are specified independently, and that hemogenic endothelium first appears in the YS and produces blood precursors with markers related to definitive hematopoiesis.
Assuntos
Hemangioblastos/citologia , Hematopoese , Camundongos/embriologia , Saco Vitelino/citologia , Animais , Linhagem da Célula , Células Clonais , Feminino , Saco Vitelino/irrigação sanguíneaRESUMO
In the mouse embryo and differentiating embryonic stem cells, the hematopoietic, endothelial, and cardiomyocyte lineages are derived from Flk1+ mesodermal progenitors. Here, we report that surface expression of Podocalyxin (Podxl), a member of the CD34 family of sialomucins, can be used to subdivide the Flk1+ cells in differentiating embryoid bodies at day 4.75 into populations that develop into distinct mesodermal lineages. Definitive hematopoietic potential was restricted to the Flk1+Podxl+ population, while the Flk1-negative Podxl+ population displayed only primitive erythroid potential. The Flk1+Podxl-negative population contained endothelial cells and cardiomyocyte potential. Podxl expression distinguishes Flk1+ mesoderm populations in mouse embryos at days 7.5, 8.5, and 9.5 and is a marker of progenitor stage primitive erythroblasts. These findings identify Podxl as a useful tool for separating distinct mesodermal lineages.
Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células Endoteliais/metabolismo , Mesoderma/metabolismo , Células-Tronco Pluripotentes/metabolismo , Sialoglicoproteínas/biossíntese , Animais , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Células Endoteliais/citologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Mesoderma/citologia , Camundongos , Camundongos Transgênicos , Células-Tronco Pluripotentes/citologia , Sialoglicoproteínas/metabolismo , Análise Serial de TecidosRESUMO
Erythroid (red blood) cells are the first cell type to be specified in the postimplantation mammalian embryo and serve highly specialized, essential functions throughout gestation and postnatal life. The existence of 2 developmentally and morphologically distinct erythroid lineages, primitive (embryonic) and definitive (adult), was described for the mammalian embryo more than a century ago. Cells of the primitive erythroid lineage support the transition from rapidly growing embryo to fetus, whereas definitive erythrocytes function during the transition from fetal life to birth and continue to be crucial for a variety of normal physiologic processes. Over the past few years, it has become apparent that the ontogeny and maturation of these lineages are more complex than previously appreciated. In this review, we highlight some common and distinguishing features of the red blood cell lineages and summarize advances in our understanding of how these cells develop and differentiate throughout mammalian ontogeny.
Assuntos
Desenvolvimento Embrionário/fisiologia , Eritropoese/fisiologia , Mamíferos/embriologia , Animais , Embrião de Mamíferos , Eritrócitos/fisiologia , Células Eritroides/citologia , Eritropoese/genética , Humanos , Mamíferos/fisiologia , Modelos Biológicos , Saco Vitelino/irrigação sanguínea , Saco Vitelino/citologia , Saco Vitelino/fisiologiaRESUMO
Sarcopenia is a progressive muscle wasting disorder that severely impacts the quality of life of elderly individuals. Although the natural aging process primarily causes sarcopenia, it can develop in response to other conditions. Because muscle function is influenced by numerous changes that occur with age, the etiology of sarcopenia remains unclear. However, recent characterizations of the aging muscle transcriptional landscape, signaling pathway disruptions, fiber and extracellular matrix compositions, systemic metabolomic and inflammatory responses, mitochondrial function, and neurological inputs offer insights and hope for future treatments. This review will discuss age-related changes in healthy muscle and our current understanding of how this can deteriorate into sarcopenia. As our elderly population continues to grow, we must understand sarcopenia and find treatments that allow individuals to maintain independence and dignity throughout an extended lifespan.
RESUMO
Extensive genetic studies have elucidated cardiomyocyte differentiation and associated gene networks using single-cell RNA-seq, yet the intricate transcriptional mechanisms governing cardiac conduction system (CCS) development and working cardiomyocyte differentiation remain largely unexplored. Here we show that mice deleted for Dhx36 (encoding the Dhx36 helicase) in the embryonic or neonatal heart develop overt dilated cardiomyopathy, surface ECG alterations related to cardiac impulse propagation, and (in the embryonic heart) a lack of a ventricular conduction system (VCS). Heart snRNA-seq and snATAC-seq reveal the role of Dhx36 in CCS development and in the differentiation of working cardiomyocytes. Dhx36 deficiency directly influences cardiomyocyte gene networks by disrupting the resolution of promoter G-quadruplexes in key cardiac genes, impacting cardiomyocyte differentiation and CCS morphogenesis, and ultimately leading to dilated cardiomyopathy and atrioventricular block. These findings further identify crucial genes and pathways that regulate the development and function of the VCS/Purkinje fiber (PF) network.
Assuntos
Diferenciação Celular , RNA Helicases DEAD-box , Sistema de Condução Cardíaco , Miócitos Cardíacos , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Diferenciação Celular/genética , Camundongos , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Sistema de Condução Cardíaco/metabolismo , Camundongos Knockout , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/metabolismo , Bloqueio Atrioventricular/genética , Bloqueio Atrioventricular/fisiopatologia , Quadruplex G , Ventrículos do Coração/citologia , Regiões Promotoras Genéticas/genética , Redes Reguladoras de Genes , Masculino , FemininoRESUMO
Primitive erythropoiesis is a vital process for mammalian embryonic development. Here we report the generation and characterization of a new transgenic mouse line that expresses a histone H2B-CFP fusion protein in the nuclei of primitive erythroid cells. We demonstrate the potential of this ε-globin-histone H2B-CFP line for multicolor imaging and flow cytometry analysis. The ε-globin-H2B-CFP line was used to analyze the cell cycle distribution and proliferation of CFP-expressing primitive erythroblasts from E8.5-E13.5. We also evaluated phagocytosis of extruded CFP-positive nuclei by macrophages in fetal liver and placenta. The ε-globin-H2B-CFP transgenic mouse line adds to the available tools for studying the development of the primitive erythroid lineage.
Assuntos
Eritroblastos/fisiologia , Eritropoese , Proteínas de Fluorescência Verde/metabolismo , Animais , Linhagem da Célula , Núcleo Celular/fisiologia , Proliferação de Células , Embrião de Mamíferos , Eritroblastos/citologia , Eritropoese/genética , Genes Reporter , Genótipo , Histonas/genética , Histonas/metabolismo , Camundongos , Camundongos Transgênicos , Fagocitose , Proteínas Recombinantes de Fusão/metabolismo , Globinas épsilon/genética , Globinas épsilon/metabolismoRESUMO
The visceral endoderm (VE) is an epithelial tissue in the early postimplantation mouse embryo that encapsulates the pluripotent epiblast distally and the extraembryonic ectoderm proximally. In addition to facilitating nutrient exchange before the establishment of a circulation, the VE is critical for patterning the epiblast. Since VE is derived from the primitive endoderm (PrE) of the blastocyst, and PrE-derived eXtraembryonic ENdoderm (XEN) cells can be propagated in vitro, XEN cells should provide an important tool for identifying factors that direct VE differentiation. In this study, we demonstrated that BMP4 signaling induces the formation of a polarized epithelium in XEN cells. This morphological transition was reversible, and was associated with the acquisition of a molecular signature comparable to extraembryonic (ex) VE. Resembling exVE which will form the endoderm of the visceral yolk sac, BMP4-treated XEN cells regulated hematopoiesis by stimulating the expansion of primitive erythroid progenitors. We also observed that LIF exerted an antagonistic effect on BMP4-induced XEN cell differentiation, thereby impacting the extrinsic conditions used for the isolation and maintenance of XEN cells in an undifferentiated state. Taken together, our data suggest that XEN cells can be differentiated towards an exVE identity upon BMP4 stimulation and therefore represent a valuable tool for investigating PrE lineage differentiation.
Assuntos
Padronização Corporal/efeitos dos fármacos , Proteína Morfogenética Óssea 4/farmacologia , Endoderma/efeitos dos fármacos , Endoderma/embriologia , Membranas Extraembrionárias/citologia , Transdução de Sinais/efeitos dos fármacos , Vísceras/embriologia , Animais , Padronização Corporal/genética , Polaridade Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Endoderma/citologia , Epitélio/efeitos dos fármacos , Epitélio/embriologia , Epitélio/metabolismo , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/efeitos dos fármacos , Células Precursoras Eritroides/metabolismo , Membranas Extraembrionárias/efeitos dos fármacos , Membranas Extraembrionárias/embriologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Fator Inibidor de Leucemia/farmacologia , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais/genética , Regulação para Cima/efeitos dos fármacos , Vísceras/citologia , Vísceras/efeitos dos fármacosRESUMO
Primitive erythroid (EryP) progenitors are the first cell type specified from the mesoderm late in gastrulation. We used a transgenic reporter to image and purify the earliest blood progenitors and their descendants from developing mouse embryos. EryP progenitors exhibited remarkable proliferative capacity in the yolk sac immediately before the onset of circulation, when these cells comprise nearly half of all cells of the embryo. Global expression profiles generated at 24-hour intervals from embryonic day 7.5 through 2.5 revealed 2 abrupt changes in transcript diversity that coincided with the entry of EryPs into the circulation and with their late maturation and enucleation, respectively. These changes were paralleled by the expression of critical regulatory factors. Experiments designed to test predictions from these data demonstrated that the Wnt-signaling pathway is active in EryP progenitors, which display an aerobic glycolytic profile and the numbers of which are regulated by transforming growth factor-ß1 and hypoxia. This is the first transcriptome assembled for a single hematopoietic lineage of the embryo over the course of its differentiation.
Assuntos
Linhagem da Célula/genética , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/metabolismo , Eritropoese/genética , Redes Reguladoras de Genes , Animais , Sequência de Bases , Citocinas/genética , Primers do DNA/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Glicólise/genética , Proteínas de Fluorescência Verde/genética , Substâncias de Crescimento/genética , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Oxigênio/metabolismo , Gravidez , RNA Mensageiro/genética , Proteínas Recombinantes de Fusão/genética , Transdução de Sinais/genética , Globinas épsilon/genéticaRESUMO
The primitive erythroid (EryP) lineage is the first to differentiate during mammalian embryogenesis. Eklf/Klf1 is a transcriptional regulator that is essential for definitive erythropoiesis in the fetal liver. Dissection of the role(s) of Eklf within the EryP compartment has been confounded by the simultaneous presence of EryP and fetal liver-derived definitive erythroid (EryD) cells in the blood. To address this problem, we have distinguished EryP from their definitive counterparts by crossing Eklf(+/-) mutant and ε-globin::histone H2B-GFP transgenic mice. Eklf-deficient EryP exhibit membrane ruffling and a failure to acquire the typical discoidal erythroid shape but they can enucleate. Flow cytometric analyses of H2B-GFP(+) EryP revealed that Eklf heterozygosity results in the loss of Ter119 surface expression on EryP but not on EryD. Null mutation of Eklf resulted in abnormal expression of a range of surface proteins by EryP. In particular, several megakaryocyte markers were ectopically expressed by maturing Eklf-null EryP. Unexpectedly, the platelet tetraspanin CD9 was detected on nucleated wild-type EryP but not on mature EryD and thus provides a useful marker for purifying circulating EryP. We conclude that Eklf gene dosage is crucial for regulating the surface phenotype and molecular identity of maturing primitive erythroid cells.
Assuntos
Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/metabolismo , Eritropoese/genética , Eritropoese/fisiologia , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Animais , Antígenos CD/metabolismo , Sequência de Bases , Antígenos de Grupos Sanguíneos/metabolismo , Primers do DNA/genética , Feminino , Feto/citologia , Feto/metabolismo , Haploinsuficiência , Humanos , Fatores de Transcrição Kruppel-Like/deficiência , Fígado/citologia , Fígado/metabolismo , Megacariócitos/citologia , Megacariócitos/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mutação , Fenótipo , Gravidez , Tetraspanina 29RESUMO
Adult stem cells sustain tissue homeostasis and regeneration; their functional decline is often linked to aging, which is characterized by the progressive loss of physiological functions across multiple tissues and organs. The resident stem cells in skeletal muscle, termed satellite cells, are normally quiescent but activate upon injury to reconstitute the damaged tissue. In this review, we discuss the current understanding of the molecular processes that contribute to the functional failure of satellite cells during aging. This failure is due not only to intrinsic changes but also to extrinsic factors, most of which are still undefined but originate from the muscle tissue microenvironment of the satellite cells (the niche), or from the systemic environment. We also highlight the emerging applications of the powerful single-cell sequencing technologies in the study of skeletal muscle aging, particularly in the heterogeneity of the satellite cell population and the molecular interaction of satellite cells and other cell types in the niche. An improved understanding of how satellite cells communicate with their environment, and how this communication is perturbed with aging, will be helpful for defining countermeasures against loss of muscle regenerative capacity in sarcopenia.
Assuntos
Células Satélites de Músculo Esquelético , Envelhecimento , Senescência Celular , Comunicação , Humanos , Músculo Esquelético , Regeneração , Células-TroncoRESUMO
Skeletal muscle regeneration depends on the correct expansion of resident quiescent stem cells (satellite cells), a process that becomes less efficient with aging. Here, we show that mitochondrial dynamics are essential for the successful regenerative capacity of satellite cells. The loss of mitochondrial fission in satellite cells-due to aging or genetic impairment-deregulates the mitochondrial electron transport chain (ETC), leading to inefficient oxidative phosphorylation (OXPHOS) metabolism and mitophagy and increased oxidative stress. This state results in muscle regenerative failure, which is caused by the reduced proliferation and functional loss of satellite cells. Regenerative functions can be restored in fission-impaired or aged satellite cells by the re-establishment of mitochondrial dynamics (by activating fission or preventing fusion), OXPHOS, or mitophagy. Thus, mitochondrial shape and physical networking controls stem cell regenerative functions by regulating metabolism and proteostasis. As mitochondrial fission occurs less frequently in the satellite cells in older humans, our findings have implications for regeneration therapies in sarcopenia.
Assuntos
Dinâmica Mitocondrial , Mitofagia , Idoso , Humanos , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Músculos/metabolismo , Células-Tronco/metabolismoRESUMO
Sustained exposure to a young systemic environment rejuvenates aged organisms and promotes cellular function. However, due to the intrinsic complexity of tissues it remains challenging to pinpoint niche-independent effects of circulating factors on specific cell populations. Here, we describe a method for the encapsulation of human and mouse skeletal muscle progenitors in diffusible polyethersulfone hollow fiber capsules that can be used to profile systemic aging in vivo independent of heterogeneous short-range tissue interactions. We observed that circulating long-range signaling factors in the old systemic environment lead to an activation of Myc and E2F transcription factors, induce senescence, and suppress myogenic differentiation. Importantly, in vitro profiling using young and old serum in 2D culture does not capture all pathways deregulated in encapsulated cells in aged mice. Thus, in vivo transcriptomic profiling using cell encapsulation allows for the characterization of effector pathways of systemic aging with unparalleled accuracy.
Assuntos
Células Satélites de Músculo Esquelético , Células-Tronco , Envelhecimento , Animais , Diferenciação Celular , Encapsulamento de Células , Camundongos , Músculo Esquelético/metabolismo , Células-Tronco/metabolismo , TranscriptomaRESUMO
Stem cells differ from other cells of the body in their potential for multilineage differentiation and their continued proliferation without substantial loss of potential (so-called self-renewal). These properties are maintained and regulated by a specific microenvironment referred to as "niche." This term has been used to indicate the specific location of stem cells within tissues, as well as the cellular and molecular components that critically determine stem cell behavior. Whereas other, perhaps less complex, stem cell niches (e.g., Drosophila germarium) have been more clearly dissected in the 30 years that have passed since these observations, the hematopoietic stem cell (HSC) niche has proven challenging due to the difficulty to detect HSCs under normal conditions and the dynamism of HSCs and other cells of the bone marrow that influence HSC behavior. This article reviews the recent development of the HSC niche field with emphasis on prospective integrative mechanisms within bone marrow homeostasis and multisystem physiology. For that purpose, we will first highlight anatomical and histological features of the bone marrow of relevance for HSC behavior; then, we will summarize the principal findings concerning different cell types and potential mechanisms by which they critically regulate HSC function.
Assuntos
Medula Óssea/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Animais , Movimento Celular/fisiologia , Quimiocina CXCL12/fisiologia , Humanos , Proteínas de Filamentos Intermediários/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Modelos Animais , Proteínas do Tecido Nervoso/fisiologia , Nestina , Osteoblastos/citologia , Osteoblastos/fisiologiaRESUMO
Primitive erythroid cells (EryP) are the earliest differentiated cell type of the mammalian embryo. They appear in the yolk sac by embryonic day 7.5, begin to enter the embryonic circulation 2 days later and continue to mature in a stepwise and synchronous fashion. Like their adult counterparts, EryP enucleate. However, EryP circulate throughout the embryo for several days before the first enucleated forms can be identified in the blood. We have used transgenic mouse lines in which GFP marks EryP to investigate this seemingly long lag and have identified a previously unrecognized developmental niche for EryP maturation. After exiting the yolk sac, EryP begin to express cell adhesion proteins, including alpha4, alpha5, and beta1 integrins, on their surface and migrate into the fetal liver (FL), where they interact with macrophages within erythroblastic islands. Binding of EryP to FL macrophages in vitro is stage-specific and partly depends on VCAM-1. The ability to tag and track EryP nuclei using a transgenic mouse line expressing an H2B-EGFP fusion allowed us to identify and characterize extruded EryP nuclei and to demonstrate that molecules such as alpha4, alpha5, and beta1 integrins are redistributed onto the plasma membrane surrounding the extruding nucleus. FL macrophages engulf extruded EryP nuclei in cocultures and in the native FL in vivo. We conclude that EryP home to, complete their maturation, and enucleate within the FL, a tissue that is just developing as EryP begin to circulate. Our observations suggest a simple solution for a puzzling aspect of the development of the primitive erythroid lineage.
Assuntos
Diferenciação Celular , Células Precursoras Eritroides/citologia , Feto/embriologia , Fígado/citologia , Fígado/embriologia , Animais , Adesão Celular , Moléculas de Adesão Celular/genética , Núcleo Celular/metabolismo , Eritroblastos/citologia , Integrinas/metabolismo , Macrófagos/citologia , Camundongos , Regulação para Cima/genética , Molécula 1 de Adesão de Célula Vascular/metabolismoRESUMO
Skeletal muscle has a remarkable ability to regenerate owing to its resident stem cells (also called satellite cells, SCs). SCs are normally quiescent; when stimulated by damage, they activate and expand to form new fibers. The mechanisms underlying SC proliferative progression remain poorly understood. Here we show that DHX36, a helicase that unwinds RNA G-quadruplex (rG4) structures, is essential for muscle regeneration by regulating SC expansion. DHX36 (initially named RHAU) is barely expressed at quiescence but is highly induced during SC activation and proliferation. Inducible deletion of Dhx36 in adult SCs causes defective proliferation and muscle regeneration after damage. System-wide mapping in proliferating SCs reveals DHX36 binding predominantly to rG4 structures at various regions of mRNAs, while integrated polysome profiling shows that DHX36 promotes mRNA translation via 5'-untranslated region (UTR) rG4 binding. Furthermore, we demonstrate that DHX36 specifically regulates the translation of Gnai2 mRNA by unwinding its 5' UTR rG4 structures and identify GNAI2 as a downstream effector of DHX36 for SC expansion. Altogether, our findings uncover DHX36 as an indispensable post-transcriptional regulator of SC function and muscle regeneration acting through binding and unwinding rG4 structures at 5' UTR of target mRNAs.