Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(5): e1011383, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37252940

RESUMO

Aichi virus (AiV), a small non-enveloped RNA virus, hijacks the endoplasmic reticulum (ER)-Golgi cholesterol transport machinery to form cholesterol-rich replication sites originating from Golgi membranes. Interferon-induced transmembrane proteins (IFITMs) are antiviral restriction factors, whose involvement in intracellular cholesterol transport is suggested. Here, we describe the roles of IFITM1 in cholesterol transport that affect AiV RNA replication. IFITM1 stimulated AiV RNA replication and its knockdown significantly reduced the replication. In replicon RNA-transfected or infected cells, endogenous IFITM1 localized to the viral RNA replication sites. Further, IFITM1 interacted with viral proteins and host Golgi proteins, ACBD3, PI4KB, OSBP, which constitute the replication sites. When overexpressed, IFITM1 localized to the Golgi as well as endosomes, and this phenotype was also observed for endogenous IFITM1 early in AiV RNA replication, leading to the distribution of cholesterol at the Golgi-derived replication sites. The pharmacological inhibition of ER-Golgi cholesterol transport or endosomal cholesterol export impaired AiV RNA replication and cholesterol accumulation at the replication sites. Such defects were corrected by expression of IFITM1. Overexpressed IFITM1 facilitated late endosome-Golgi cholesterol transport without any viral proteins. In summary, we propose a model in which IFITM1 enhances cholesterol transport to the Golgi to accumulate cholesterol at Golgi-derived replication sites, providing a novel mechanism by which IFITM1 enables efficient genome replication of non-enveloped RNA virus.


Assuntos
Replicação do RNA , RNA Viral , RNA Viral/genética , RNA Viral/metabolismo , Replicação Viral/fisiologia , Proteínas Virais/metabolismo , Colesterol/metabolismo
2.
J Virol ; 92(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29367253

RESUMO

Positive-strand RNA viruses, including picornaviruses, utilize cellular machinery for genome replication. Previously, we reported that each of the 2B, 2BC, 2C, 3A, and 3AB proteins of Aichi virus (AiV), a picornavirus, forms a complex with the Golgi apparatus protein ACBD3 and phosphatidylinositol 4-kinase IIIß (PI4KB) at viral RNA replication sites (replication organelles [ROs]), enhancing PI4KB-dependent phosphatidylinositol 4-phosphate (PI4P) production. Here, we demonstrate AiV hijacking of the cellular cholesterol transport system involving oxysterol-binding protein (OSBP), a PI4P-binding cholesterol transfer protein. AiV RNA replication was inhibited by silencing cellular proteins known to be components of this pathway, OSBP, the ER membrane proteins VAPA and VAPB (VAP-A/B), the PI4P-phosphatase SAC1, and PI-transfer protein ß. OSBP, VAP-A/B, and SAC1 were present at RNA replication sites. We also found various previously unknown interactions among the AiV proteins (2B, 2BC, 2C, 3A, and 3AB), ACBD3, OSBP, VAP-A/B, and SAC1, and the interactions were suggested to be involved in recruiting the component proteins to AiV ROs. Importantly, the OSBP-2B interaction enabled PI4P-independent recruitment of OSBP to AiV ROs, indicating preferential recruitment of OSBP among PI4P-binding proteins. Protein-protein interaction-based OSBP recruitment has not been reported for other picornaviruses. Cholesterol was accumulated at AiV ROs, and inhibition of OSBP-mediated cholesterol transfer impaired cholesterol accumulation and AiV RNA replication. Electron microscopy showed that AiV-induced vesicle-like structures were close to ER membranes. Altogether, we conclude that AiV directly recruits the cholesterol transport machinery through protein-protein interactions, resulting in formation of membrane contact sites between the ER and AiV ROs and cholesterol supply to the ROs.IMPORTANCE Positive-strand RNA viruses utilize host pathways to modulate the lipid composition of viral RNA replication sites for replication. Previously, we demonstrated that Aichi virus (AiV), a picornavirus, forms a complex comprising certain proteins of AiV, the Golgi apparatus protein ACBD3, and the lipid kinase PI4KB to synthesize PI4P lipid at the sites for AiV RNA replication. Here, we confirmed cholesterol accumulation at the AiV RNA replication sites, which are established by hijacking the host cholesterol transfer machinery mediated by a PI4P-binding cholesterol transfer protein, OSBP. We showed that the component proteins of the machinery, OSBP, VAP, SAC1, and PITPNB, are all essential host factors for AiV replication. Importantly, the machinery is directly recruited to the RNA replication sites through previously unknown interactions of VAP/OSBP/SAC1 with the AiV proteins and with ACBD3. Consequently, we propose a specific strategy employed by AiV to efficiently accumulate cholesterol at the RNA replication sites via protein-protein interactions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Colesterol/metabolismo , Kobuvirus/fisiologia , Proteínas de Membrana/metabolismo , Modelos Biológicos , Infecções por Picornaviridae/metabolismo , RNA Viral/metabolismo , Receptores de Esteroides/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Virais/metabolismo , Replicação Viral/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Colesterol/genética , Humanos , Proteínas de Membrana/genética , Infecções por Picornaviridae/genética , Infecções por Picornaviridae/patologia , RNA Viral/genética , Receptores de Esteroides/genética , Proteínas de Transporte Vesicular/genética , Proteínas Virais/genética
3.
J Virol ; 88(12): 6586-98, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24672044

RESUMO

UNLABELLED: Phosphatidylinositol 4-kinase IIIß (PI4KB) is a host factor required for the replication of certain picornavirus genomes. We previously showed that nonstructural proteins 2B, 2BC, 2C, 3A, and 3AB of Aichi virus (AiV), a picornavirus, interact with the Golgi protein, acyl-coenzyme A binding domain containing 3 (ACBD3), which interacts with PI4KB. These five viral proteins, ACBD3, PI4KB, and the PI4KB product phosphatidylinositol 4-phosphate (PI4P) colocalize to the AiV RNA replication sites (J. Sasaki et al., EMBO J. 31:754-766, 2012). We here examined the roles of these viral and cellular molecules in the formation of AiV replication complexes. Immunofluorescence microscopy revealed that treatment of AiV polyprotein-expressing cells with a small interfering RNA targeting ACBD3 abolished colocalization of the viral 2B, 2C, and 3A proteins with PI4KB. A PI4KB-specific inhibitor also prevented their colocalization. Virus RNA replication increased the level of cellular PI4P without affecting that of PI4KB, and individual expression of 2B, 2BC, 2C, 3A, or 3AB stimulated PI4P generation. These results suggest that the viral protein/ACBD3/PI4KB complex plays an important role in forming the functional replication complex by enhancing PI4P synthesis. Of the viral proteins, 3A and 3AB were shown to stimulate the in vitro kinase activity of PI4KB through forming a 3A or 3AB/ACBD3/PI4KB complex, whereas the ACBD3-mediated PI4KB activation by 2B and 2C remains to be demonstrated. IMPORTANCE: The phosphatidylinositol 4-kinase PI4KB is a host factor required for the replication of certain picornavirus genomes. Aichi virus, a picornavirus belonging to the genus Kobuvirus, forms a complex comprising one of the viral nonstructural proteins 2B, 2BC, 2C, 3A, and 3AB, the Golgi protein ACBD3, and PI4KB to synthesize PI4P at the sites for viral RNA replication. However, the roles of this protein complex in forming the replication complex are unknown. This study showed that virus RNA replication and individual viral proteins enhance the level of cellular PI4P, and suggested that the viral protein/ACBD3/PI4KB complex plays an important role in forming a functional replication complex. Thus, the present study provides a new example of modulation of cellular lipid metabolism by viruses to support the replication of their genomes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Kobuvirus/fisiologia , Proteínas de Membrana/metabolismo , Fosfatos de Fosfatidilinositol/biossíntese , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Infecções por Picornaviridae/enzimologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Proteínas Adaptadoras de Transdução de Sinal/genética , Humanos , Kobuvirus/genética , Proteínas de Membrana/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Infecções por Picornaviridae/genética , Infecções por Picornaviridae/virologia , Ligação Proteica , Transporte Proteico , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA