Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cell ; 141(1): 117-28, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20371349

RESUMO

The association of p120 catenin (p120) with the juxtamembrane domain (JMD) of the cadherin cytoplasmic tail is critical for the surface stability of cadherin-catenin cell-cell adhesion complexes. Here, we present the crystal structure of p120 isoform 4A in complex with the JMD core region (JMD(core)) of E-cadherin. The p120 armadillo repeat domain contains modular binding pockets that are complementary to electrostatic and hydrophobic properties of the JMD(core). Single-residue mutations within the JMD(core)-binding site of p120 abolished its interaction with E- and N-cadherins in vitro and in cultured cells. These mutations of p120 enabled us to clearly differentiate between N-cadherin-dependent and -independent steps of neuronal dendritic spine morphogenesis crucial for synapse development. NMR studies revealed that p120 regulates the stability of cadherin-mediated cell-cell adhesion by associating with the majority of the JMD, including residues implicated in clathrin-mediated endocytosis and Hakai-dependent ubiquitination of E-cadherin, through its discrete "dynamic" and "static" binding sites.


Assuntos
Caderinas/química , Caderinas/metabolismo , Cateninas/química , Cateninas/metabolismo , Adesão Celular , Animais , Caderinas/genética , Cateninas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Camundongos , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , delta Catenina
2.
J Cell Sci ; 134(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34851405

RESUMO

Cadherin-mediated cell adhesion requires anchoring via the ß-catenin-α-catenin complex to the actin cytoskeleton, yet, α-catenin only binds F-actin weakly. A covalent fusion of VE-cadherin to α-catenin enhances actin anchorage in endothelial cells and strongly stabilizes endothelial junctions in vivo, blocking inflammatory responses. Here, we have analyzed the underlying mechanism. We found that VE-cadherin-α-catenin constitutively recruits the actin adaptor vinculin. However, removal of the vinculin-binding region of α-catenin did not impair the ability of VE-cadherin-α-catenin to enhance junction integrity. Searching for an alternative explanation for the junction-stabilizing mechanism, we found that an antibody-defined epitope, normally buried in a short α1-helix of the actin-binding domain (ABD) of α-catenin, is openly displayed in junctional VE-cadherin-α-catenin chimera. We found that this epitope became exposed in normal α-catenin upon triggering thrombin-induced tension across the VE-cadherin complex. These results suggest that the VE-cadherin-α-catenin chimera stabilizes endothelial junctions due to conformational changes in the ABD of α-catenin that support constitutive strong binding to actin.


Assuntos
Caderinas , Células Endoteliais , Citoesqueleto de Actina , Actinas/genética , Caderinas/genética , Junções Intercelulares , Vinculina , alfa Catenina/genética
3.
Bioorg Med Chem ; 87: 117275, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37156065

RESUMO

Achondroplasia is a rare disease affecting bone growth and is caused by a missense mutation in the fibroblast growth factor receptor 3 (FGFR3) gene. In the past few years, there were multiple experimental drugs entering into clinical trials for treating achondroplasia including vosoritide, the first precision medicine approved for this indication. This perspective presents the mechanism of action, benefit, and potential mechanistic limitation of the drugs currently being evaluated in clinical trials for achondroplasia. This article also discusses the potential impact of those drugs not only in increasing the growth of individuals living with achondroplasia but also in improving their quality of life.


Assuntos
Acondroplasia , Medicina de Precisão , Humanos , Qualidade de Vida , Acondroplasia/tratamento farmacológico , Acondroplasia/genética , Mutação
4.
Nature ; 483(7387): 108-12, 2012 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-22286060

RESUMO

Inositol-1,4,5-trisphosphate receptors (InsP(3)Rs) and ryanodine receptors (RyRs) are tetrameric intracellular Ca(2+) channels. In each of these receptor families, the pore, which is formed by carboxy-terminal transmembrane domains, is regulated by signals that are detected by large cytosolic structures. InsP(3)R gating is initiated by InsP(3) binding to the InsP(3)-binding core (IBC, residues 224-604 of InsP(3)R1) and it requires the suppressor domain (SD, residues 1-223 of InsP(3)R1). Here we present structures of the amino-terminal region (NT, residues 1-604) of rat InsP(3)R1 with (3.6 Å) and without (3.0 Å) InsP(3) bound. The arrangement of the three NT domains, SD, IBC-ß and IBC-α, identifies two discrete interfaces (α and ß) between the IBC and SD. Similar interfaces occur between equivalent domains (A, B and C) in RyR1 (ref. 9). The orientations of the three domains when docked into a tetrameric structure of InsP(3)R and of the ABC domains docked into RyR are remarkably similar. The importance of the α-interface for activation of InsP(3)R and RyR is confirmed by mutagenesis and, for RyR, by disease-causing mutations. Binding of InsP(3) causes partial closure of the clam-like IBC, disrupting the ß-interface and pulling the SD towards the IBC. This reorients an exposed SD loop ('hotspot' (HS) loop) that is essential for InsP(3)R activation. The loop is conserved in RyR and includes mutations that are associated with malignant hyperthermia and central core disease. The HS loop interacts with an adjacent NT, suggesting that activation re-arranges inter-subunit interactions. The A domain of RyR functionally replaced the SD in full-length InsP(3)R, and an InsP(3)R in which its C-terminal transmembrane region was replaced by that from RyR1 was gated by InsP(3) and blocked by ryanodine. Activation mechanisms are conserved between InsP(3)R and RyR. Allosteric modulation of two similar domain interfaces within an N-terminal subunit reorients the first domain (SD or A domain), allowing it, through interactions of the second domain of an adjacent subunit (IBC-ß or B domain), to gate the pore.


Assuntos
Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sequência de Aminoácidos , Animais , Apoproteínas/química , Apoproteínas/metabolismo , Microscopia Crioeletrônica , Inositol 1,4,5-Trifosfato/química , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Conformação Proteica , Estrutura Terciária de Proteína , Coelhos , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
5.
J Cell Sci ; 128(6): 1150-65, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25653389

RESUMO

The cadherin-catenin adhesion complex is a key contributor to epithelial tissue stability and dynamic cell movements during development and tissue renewal. How this complex is regulated to accomplish these functions is not fully understood. We identified several phosphorylation sites in mammalian αE-catenin (also known as catenin α-1) and Drosophila α-Catenin within a flexible linker located between the middle (M)-region and the carboxy-terminal actin-binding domain. We show that this phospho-linker (P-linker) is the main phosphorylated region of α-catenin in cells and is sequentially modified at casein kinase 2 and 1 consensus sites. In Drosophila, the P-linker is required for normal α-catenin function during development and collective cell migration, although no obvious defects were found in cadherin-catenin complex assembly or adherens junction formation. In mammalian cells, non-phosphorylatable forms of α-catenin showed defects in intercellular adhesion using a mechanical dispersion assay. Epithelial sheets expressing phosphomimetic forms of α-catenin showed faster and more coordinated migrations after scratch wounding. These findings suggest that phosphorylation and dephosphorylation of the α-catenin P-linker are required for normal cadherin-catenin complex function in Drosophila and mammalian cells.


Assuntos
Caderinas/metabolismo , Caseína Quinase II/metabolismo , Caseína Quinase I/metabolismo , Adesão Celular , Drosophila melanogaster/metabolismo , alfa Catenina/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Apoptose , Western Blotting , Caderinas/genética , Caseína Quinase I/genética , Caseína Quinase II/genética , Membrana Celular/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Cães , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Imunofluorescência , Humanos , Imunoprecipitação , Células Madin Darby de Rim Canino , Dados de Sequência Molecular , Ovário/citologia , Ovário/metabolismo , Fosforilação , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , alfa Catenina/química , alfa Catenina/genética
6.
J Biol Chem ; 290(31): 18890-903, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26070562

RESUMO

α-Catenin plays a crucial role in cadherin-mediated adhesion by binding to ß-catenin, F-actin, and vinculin, and its dysfunction is linked to a variety of cancers and developmental disorders. As a mechanotransducer in the cadherin complex at intercellular adhesions, mechanical and force-sensing properties of α-catenin are critical to its proper function. Biochemical data suggest that α-catenin adopts an autoinhibitory conformation, in the absence of junctional tension, and biophysical studies have shown that α-catenin is activated in a tension-dependent manner that in turn results in the recruitment of vinculin to strengthen the cadherin complex/F-actin linkage. However, the molecular switch mechanism from autoinhibited to the activated state remains unknown for α-catenin. Here, based on the results of an aggregate of 3 µs of molecular dynamics simulations, we have identified a dynamic salt-bridge network within the core M region of α-catenin that may be the structural determinant of the stability of the autoinhibitory conformation. According to our constant-force steered molecular dynamics simulations, the reorientation of the MII/MIII subdomains under force may constitute an initial step along the transition pathway. The simulations also suggest that the vinculin-binding domain (subdomain MI) is intrinsically much less stable than the other two subdomains in the M region (MII and MIII). Our findings reveal several key insights toward a complete understanding of the multistaged, force-induced conformational transition of α-catenin to the activated conformation.


Assuntos
alfa Catenina/química , Sequência de Aminoácidos , Adesão Celular , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , alfa Catenina/fisiologia
7.
Biochim Biophys Acta ; 1853(9): 1980-91, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25461839

RESUMO

The two major calcium (Ca²âº) release channels on the sarco/endoplasmic reticulum (SR/ER) are inositol 1,4,5-trisphosphate and ryanodine receptors (IP3Rs and RyRs). They play versatile roles in essential cell signaling processes, and abnormalities of these channels are associated with a variety of diseases. Structural information on IP3Rs and RyRs determined using multiple techniques including X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and cryo-electron microscopy (EM), has significantly advanced our understanding of the mechanisms by which these Ca²âº release channels function under normal and pathophysiological circumstances. In this review, structural advances on the understanding of the mechanisms of IP3R and RyR function and dysfunction are summarized. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.


Assuntos
Retículo Endoplasmático/química , Inositol 1,4,5-Trifosfato/química , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Animais , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Humanos , Inositol 1,4,5-Trifosfato/genética , Inositol 1,4,5-Trifosfato/metabolismo , Estrutura Terciária de Proteína , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Relação Estrutura-Atividade
8.
J Biol Chem ; 289(18): 12195-201, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24648513

RESUMO

Constitutively activated variants of small GTPases, which provide valuable functional probes of their role in cellular signaling pathways, can often be generated by mutating the canonical catalytic residue (e.g. Ras Q61L) to impair GTP hydrolysis. However, this general approach is ineffective for a substantial fraction of the small GTPase family in which this residue is not conserved (e.g. Rap) or not catalytic (e.g. Rheb). Using a novel engineering approach, we have manipulated nucleotide binding through structure-guided substitutions of an ultraconserved glycine residue in the G3-box motif (DXXG). Substitution of Rheb Gly-63 with alanine impaired both intrinsic and TSC2 GTPase-activating protein (GAP)-mediated GTP hydrolysis by displacing the hydrolytic water molecule, whereas introduction of a bulkier valine side chain selectively blocked GTP binding by steric occlusion of the γ-phosphate. Rheb G63A stimulated phosphorylation of the mTORC1 substrate p70S6 kinase more strongly than wild-type, thus offering a new tool for mammalian target of rapamycin (mTOR) signaling.


Assuntos
Glicina/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Mutação , Neuropeptídeos/genética , Serina-Treonina Quinases TOR/genética , Alanina/química , Alanina/genética , Alanina/metabolismo , Motivos de Aminoácidos/genética , Animais , Sítios de Ligação/genética , Células Cultivadas , Cristalografia por Raios X , Glicina/química , Glicina/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Hidrólise , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Modelos Moleculares , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Neuropeptídeos/química , Neuropeptídeos/metabolismo , Fosforilação , Ligação Proteica/genética , Estrutura Terciária de Proteína , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo
9.
J Biol Chem ; 288(22): 15913-25, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23589308

RESUMO

α-Catenin is an actin- and vinculin-binding protein that regulates cell-cell adhesion by interacting with cadherin adhesion receptors through ß-catenin, but the mechanisms by which it anchors the cadherin-catenin complex to the actin cytoskeleton at adherens junctions remain unclear. Here we determined crystal structures of αE-catenin in the autoinhibited state and the actin-binding domain of αN-catenin. Together with the small-angle x-ray scattering analysis of full-length αN-catenin, we deduced an elongated multidomain assembly of monomeric α-catenin that structurally and functionally couples the vinculin- and actin-binding mechanisms. Cellular and biochemical studies of αE- and αN-catenins show that αE-catenin recruits vinculin to adherens junctions more effectively than αN-catenin, partly because of its higher affinity for actin filaments. We propose a molecular switch mechanism involving multistate conformational changes of α-catenin. This would be driven by actomyosin-generated tension to dynamically regulate the vinculin-assisted linkage between adherens junctions and the actin cytoskeleton.


Assuntos
Citoesqueleto de Actina , Junções Aderentes , Modelos Biológicos , Proteínas do Tecido Nervoso , Vinculina , alfa Catenina , Citoesqueleto de Actina/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Junções Aderentes/química , Junções Aderentes/genética , Junções Aderentes/metabolismo , Animais , Linhagem Celular , Cristalografia por Raios X , Camundongos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Vinculina/química , Vinculina/genética , Vinculina/metabolismo , alfa Catenina/química , alfa Catenina/genética , alfa Catenina/metabolismo
10.
Physiology (Bethesda) ; 27(6): 331-42, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23223627

RESUMO

Calcium (Ca(2+)) release from reticular stores is a vital regulatory signal in eukaryotes. Recent structural data on large NH(2)-terminal regions of IP(3)Rs and RyRs and their tetrameric arrangement in the full-length context reveal striking mechanistic similarities in Ca(2+) release channel function. A common ancestor found in unicellular genomes underscores the fundamentality of these elements to Ca(2+) release channels.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Retículo Endoplasmático/fisiologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/fisiologia , Animais , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Humanos , Retículo Sarcoplasmático/química , Retículo Sarcoplasmático/metabolismo
11.
Subcell Biochem ; 60: 39-62, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22674067

RESUMO

The cadherin-catenin complex is the major building block of the adherens junction. It is responsible for coupling Ca(2+)-dependent intercellular junctions with various intracellular events, including actin dynamics and signaling pathways. Determination of three-dimensional structures of cadherins, p120 catenin, ß-catenin and α-catenin at atomic-level resolution has allowed us to examine how the structure and function of cell adhesion molecules are further modulated by protein-protein interactions. Structural studies of cadherins revealed the strand-swap-dependent and -independent trans-dimerization mechanisms, as well as a potential mechanism for lateral clustering of cadherin trans-dimers. Crystallographic and NMR analyses of p120 catenin revealed that it regulates the stability of cadherin-mediated cell-cell adhesion by associating with the majority of the E-cadherin juxtamembrane domain, including residues implicated in clathrin-mediated endocytosis and Hakai-dependent ubiquitination. Crystal structures of the ß-catenin/E-cadherin complex and the ß-/α-catenin chimera revealed extensive interactions necessary to form the cadherin/ß-catenin/α-catenin ternary complex. Structural characterization of α-catenin has revealed conformational changes within the N-terminal and modulatory domains that are crucial for its role as a mechanosensor of cell-cell adhesion. Further insights into the connection between the cadherin-catenin complex and the actin cytoskeleton are integral to better understand how adjoining cells communicate through cell-cell adhesion.


Assuntos
Caderinas/química , Cateninas/química , Adesão Celular/fisiologia , Animais , Caderinas/metabolismo , Cateninas/metabolismo , Humanos , Conformação Proteica
12.
PLoS One ; 18(8): e0289224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37535684

RESUMO

One central question for cell and developmental biologists is defining how epithelial cells can change shape and move during embryonic development without tearing tissues apart. This requires robust yet dynamic connections of cells to one another, via the cell-cell adherens junction, and of junctions to the actin and myosin cytoskeleton, which generates force. The last decade revealed that these connections involve a multivalent network of proteins, rather than a simple linear pathway. We focus on Drosophila Canoe, homolog of mammalian Afadin, as a model for defining the underlying mechanisms. Canoe and Afadin are complex, multidomain proteins that share multiple domains with defined and undefined binding partners. Both also share a long carboxy-terminal intrinsically disordered region (IDR), whose function is less well defined. IDRs are found in many proteins assembled into large multiprotein complexes. We have combined bioinformatic analysis and the use of a series of canoe mutants with early stop codons to explore the evolution and function of the IDR. Our bioinformatic analysis reveals that the IDRs of Canoe and Afadin differ dramatically in sequence and sequence properties. When we looked over shorter evolutionary time scales, we identified multiple conserved motifs. Some of these are predicted by AlphaFold to be alpha-helical, and two correspond to known protein interaction sites for alpha-catenin and F-actin. We next identified the lesions in a series of eighteen canoe mutants, which have early stop codons across the entire protein coding sequence. Analysis of their phenotypes are consistent with the idea that the IDR, including the conserved motifs in the IDR, are critical for protein function. These data provide the foundation for further analysis of IDR function.


Assuntos
Proteínas de Drosophila , Proteínas Intrinsicamente Desordenadas , Animais , Actinas/metabolismo , Junções Aderentes/metabolismo , Códon de Terminação , Citoesqueleto/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Desenvolvimento Embrionário , Junções Intercelulares/metabolismo , Proteínas Intrinsicamente Desordenadas/genética
13.
bioRxiv ; 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36945496

RESUMO

One central question for cell and developmental biologists is defining how epithelial cells can change shape and move during embryonic development without tearing tissues apart. This requires robust yet dynamic connections of cells to one another, via the cell-cell adherens junction, and of junctions to the actin and myosin cytoskeleton, which generates force. The last decade revealed that these connections involve a multivalent network of proteins, rather than a simple linear pathway. We focus on Drosophila Canoe, homolog of mammalian Afadin, as a model for defining the underlying mechanisms. Canoe and Afadin are complex, multidomain proteins that share multiple domains with defined and undefined binding partners. Both also share a long carboxy-terminal intrinsically disordered region (IDR), whose function is less well defined. IDRs are found in many proteins assembled into large multiprotein complexes. We have combined bioinformatic analysis and the use of a series of canoe mutants with early stop codons to explore the evolution and function of the IDR. Our bioinformatic analysis reveals that the IDRs of Canoe and Afadin differ dramatically in sequence and sequence properties. When we looked over shorter evolutionary time scales, we identified multiple conserved motifs. Some of these are predicted by AlphaFold to be alpha-helical, and two correspond to known protein interaction sites for alpha-catenin and F-actin. We next identified the lesions in a series of eighteen canoe mutants, which have early stop codons across the entire protein coding sequence. Analysis of their phenotypes are consistent with the idea that the IDR, including its C-terminal conserved motifs, are important for protein function. These data provide the foundation for further analysis of IDR function.

14.
Cancer Res ; 83(9): 1531-1542, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35503682

RESUMO

Amplification of HER2 can drive the proliferation of cancer cells, and several inhibitors of HER2 have been successfully developed. Recent advances in next-generation sequencing now reveal that HER2 is subject to mutation, with over 2,000 unique variants observed in human cancers. Several examples of oncogenic HER2 mutations have been described, and these primarily occur at allosteric sites outside the ATP-binding site. To identify the full spectrum of oncogenic HER2 driver mutations aside from a few well-studied mutations, we developed mutation-allostery-pharmacology (MAP), an in silico prediction algorithm based on machine learning. By applying this computational approach to 820 single-nucleotide variants, a list of 222 known and potential driver mutations was produced. Of these 222 mutations, 111 were screened by Ba/F3-retrovirus proliferation assays; 37 HER2 mutations were experimentally determined to be driver mutations, comprising 15 previously characterized and 22 newly identified oncogenic mutations. These oncogenic mutations mostly affected allosteric sites in the extracellular domain (ECD), transmembrane domain, and kinase domain of HER2, with only a single mutation in the HER2 orthosteric ATP site. Covalent homodimerization was established as a common mechanism of activation among HER2 ECD allosteric mutations, including the most prevalent HER2 mutation, S310F. Furthermore, HER2 allosteric mutants with enhanced covalent homodimerization were characterized by altered pharmacology that reduces the activity of existing anti-HER2 agents, including the mAb trastuzumab and the tyrosine kinase inhibitor lapatinib. Overall, the MAP-scoring and functional validation analyses provided new insights into the oncogenic activity and therapeutic targeting of HER2 mutations in cancer. SIGNIFICANCE: This study identified new oncogenic HER2 allosteric mutations, including ECD mutations that share covalent dimerization as a mechanism of oncogenicity, suggesting the need for novel inhibitors to treat HER2-mutant cancers.


Assuntos
Neoplasias , Receptor ErbB-2 , Humanos , Receptor ErbB-2/metabolismo , Quinazolinas/farmacologia , Regulação Alostérica , Neoplasias/genética , Inibidores de Proteínas Quinases/farmacologia , Mutação , Trifosfato de Adenosina
15.
bioRxiv ; 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37662204

RESUMO

Epithelial cells can become polyploid upon tissue injury, but mechanosensitive cues that trigger this state are poorly understood. Using α-catenin (α-cat) knock-out Madin Darby Canine Kidney (MDCK) cells reconstituted with wild-type and mutant forms of α-cat as a model system, we find that an established α-cat actin-binding domain unfolding mutant designed to reduce force-sensitive binding to F-actin (α-cat-H0-FABD+) can promote cytokinesis failure, particularly along epithelial wound-fronts. Enhanced α-cat coupling to cortical actin is neither sufficient nor mitotic cell-autonomous for cytokinesis failure, but critically requires the mechanosensitive Middle-domain (M1-M2-M3) and neighboring cells. Disease relevant α-cat M-domain missense mutations known to cause a form of retinal pattern dystrophy (α-cat E307K or L436P) are associated with elevated binucleation rates via cytokinesis failure. Similar binucleation rates are seen in cells expressing an α-cat salt-bridge destabilizing mutant (R551A) designed to promote M2-M3 domain unfurling at lower force thresholds. Since binucleation is strongly enhanced by removal of the M1 as opposed to M2-M3 domains, cytokinetic fidelity is most sensitive to α-cat M2-M3 domain opening. To identify α-cat conformation-dependent proximity partners that contribute to cytokinesis, we used a biotin-ligase approach to distinguished proximity partners that show enhanced recruitment upon α-cat M-domain unfurling (R551A). We identified Leucine Zipper Tumor Suppressor 2 (LZTS2), an abscission factor previously implicated in cytokinesis. We confirm that LZTS2 enriches at the midbody, but discover it also localizes to tight and tricellular junctions. LZTS2 knock-down promotes binucleation in both MDCK and Retinal Pigmented Epithelial (RPE) cells. α-cat mutants with persistent M2-M3 domain opening showed elevated junctional enrichment of LZTS2 from the cytosol compared α-cat wild-type cells. These data implicate LZTS2 as a mechanosensitive effector of α-cat that is critical for cytokinetic fidelity. This model rationalizes how persistent mechano-activation of α-cat may drive tension-induced polyploidization of epithelia post-injury and suggests an underlying mechanism for how pathogenic α-cat mutations drive macular dystrophy.

16.
Proc Natl Acad Sci U S A ; 106(27): 11040-4, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19541610

RESUMO

Muscle contraction and relaxation is regulated by transient elevations of myoplasmic Ca(2+). Ca(2+) is released from stores in the lumen of the sarco(endo)plasmic reticulum (SER) to initiate formation of the Ca(2+) transient by activation of a class of Ca(2+) release channels referred to as ryanodine receptors (RyRs) and is pumped back into the SER lumen by Ca(2+)-ATPases (SERCAs) to terminate the Ca(2+) transient. Mutations in the type 1 ryanodine receptor gene, RYR1, are associated with 2 skeletal muscle disorders, malignant hyperthermia (MH), and central core disease (CCD). The evaluation of proposed mechanisms by which RyR1 mutations cause MH and CCD is hindered by the lack of high-resolution structural information. Here, we report the crystal structure of the N-terminal 210 residues of RyR1 (RyR(NTD)) at 2.5 A. The RyR(NTD) structure is similar to that of the suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor (IP(3)Rsup), but lacks most of the long helix-turn-helix segment of the "arm" domain in IP(3)Rsup. The N-terminal beta-trefoil fold, found in both RyR and IP(3)R, is likely to play a critical role in regulatory mechanisms in this channel family. A disease-associated mutation "hot spot" loop was identified between strands 8 and 9 in a highly basic region of RyR1. Biophysical studies showed that 3 MH-associated mutations (C36R, R164C, and R178C) do not adversely affect the global stability or fold of RyR(NTD), supporting previously described mechanisms whereby mutations perturb protein-protein interactions.


Assuntos
Doença/genética , Mutação/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Sequência de Aminoácidos , Animais , Displasia Arritmogênica Ventricular Direita/genética , Cristalografia por Raios X , Receptores de Inositol 1,4,5-Trifosfato/química , Hipertermia Maligna/genética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Miopatia da Parte Central/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Coelhos , Soluções
17.
J Biol Chem ; 285(46): 36092-9, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-20843799

RESUMO

The three isoforms of the inositol 1,4,5-trisphosphate receptor (IP(3)R) exhibit distinct IP(3) sensitivities and cooperativities in calcium (Ca(2+)) channel function. The determinants underlying this isoform-specific channel gating mechanism have been localized to the N-terminal suppressor region of IP(3)R. We determined the 1.9 Å crystal structure of the suppressor domain from type 3 IP(3)R (IP(3)R3(SUP), amino acids 1-224) and revealed structural features contributing to isoform-specific functionality of IP(3)R by comparing it with our previously determined structure of the type 1 suppressor domain (IP(3)R1(SUP)). The molecular surface known to associate with the ligand binding domain (amino acids 224-604) showed marked differences between IP(3)R3(SUP) and IP(3)R1(SUP). Our NMR and biochemical studies showed that three spatially clustered residues (Glu-20, Tyr-167, and Ser-217 in IP(3)R1 and Glu-19, Trp-168, and Ser-218 in IP(3)R3) within the N-terminal suppressor domains of IP(3)R1(SUP) and IP(3)R3(SUP) interact directly with their respective C-terminal fragments. Together with the accompanying paper (Yamazaki, H., Chan, J., Ikura, M., Michikawa, T., and Mikoshiba, K. (2010) J. Biol. Chem. 285, 36081-36091), we demonstrate that the single aromatic residue in this region (Tyr-167 in IP(3)R1 and Trp-168 in IP(3)R3) plays a critical role in the coupling between ligand binding and channel gating.


Assuntos
Receptores de Inositol 1,4,5-Trifosfato/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Cristalografia por Raios X , Inositol 1,4,5-Trifosfato/química , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ativação do Canal Iônico/genética , Ativação do Canal Iônico/fisiologia , Ligantes , Espectroscopia de Ressonância Magnética , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Homologia de Sequência de Aminoácidos , Triptofano/química , Triptofano/genética , Triptofano/metabolismo , Tirosina/química , Tirosina/genética , Tirosina/metabolismo
18.
Sci Signal ; 13(625)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32234958

RESUMO

KRAS4b is a small guanosine triphosphatase (GTPase) protein that regulates several signal transduction pathways that underlie cell proliferation, differentiation, and survival. KRAS4b function requires prenylation of its C terminus and recruitment to the plasma membrane, where KRAS4b activates effector proteins including the RAF family of kinases. The Ca2+-sensing protein calmodulin (CaM) has been suggested to regulate the localization of KRAS4b through direct, Ca2+-dependent interaction, but how CaM and KRAS4b functionally interact is controversial. Here, we determined a crystal structure, which was supported by solution nuclear magnetic resonance (NMR), that revealed the sequestration of the prenyl moiety of KRAS4b in the hydrophobic pocket of the C-terminal lobe of Ca2+-bound CaM. Our engineered fluorescence resonance energy transfer (FRET)-based biosensor probes (CaMeRAS) showed that, upon stimulation of Ca2+ influx by extracellular ligands, KRAS4b reversibly translocated in a Ca2+-CaM-dependent manner from the plasma membrane to the cytoplasm in live HeLa and HEK293 cells. These results reveal a mechanism underlying the inhibition of KRAS4b activity by Ca2+ signaling pathways.


Assuntos
Calmodulina , Membrana Celular , Lipídeos de Membrana , Proteínas Proto-Oncogênicas p21(ras) , Calmodulina/química , Calmodulina/genética , Calmodulina/metabolismo , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Células HeLa , Humanos , Lipídeos de Membrana/química , Lipídeos de Membrana/genética , Lipídeos de Membrana/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
19.
J Mol Biol ; 432(2): 367-383, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31626806

RESUMO

Store operated calcium (Ca2+) entry (SOCE) is the process whereby endoplasmic reticulum (ER) Ca2+ store depletion causes Orai1-composed Ca2+ channels on the plasma membrane (PM) to open, mediating a rise in cytosolic Ca2+ levels. Stromal interaction molecules (STIMs) are the proteins that directly sense ER Ca2+ content and gate Orai1 channels due to store depletion. The trigger for STIM activation is Ca2+ unbinding from the ER lumen-oriented domains, which consist of a nonconserved amino (N) terminal region and EF-hand and sterile α motif (SAM) domains (EF-SAM), highly conserved from humans to Caenorhabditis elegans. Solution NMR structures of the human EF-SAM domains have been determined at high Ca2+ concentrations; however, no direct structural view of the Ca2+ binding mode has been elucidated. Further, no atomic resolution data currently exists on EF-SAM at low Ca2+ levels. Here, we determined the X-ray crystal structure of the C. elegans STIM luminal domain, revealing that EF-SAM binds a single Ca2+ ion with pentagonal bipyramidal geometry and an ancillary α-helix formed by the N-terminal region acts as a brace to stabilize EF-SAM. Using solution NMR, we observed EF-hand domain unfolding and a conformational exchange between folded and unfolded states involving the ancillary α-helix and the canonical EF-hand in low Ca2+. Remarkably, we also detected an α-helix (+Ca2+) to ß-strand (-Ca2+) transition at the terminal SAM domain α-helix. Collectively, our analyses indicate that one canonically bound Ca2+ ion is sufficient to stabilize the quiescent luminal domain structure, precluding unfolding, conformational exchange, and secondary structure transformation.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Membrana Celular/ultraestrutura , Proteínas de Membrana/ultraestrutura , Proteína ORAI1/genética , Molécula 1 de Interação Estromal/ultraestrutura , Sequência de Aminoácidos/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/ultraestrutura , Cálcio/química , Cálcio/metabolismo , Sinalização do Cálcio/genética , Membrana Celular/genética , Cristalografia por Raios X , Motivos EF Hand/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/ultraestrutura , Humanos , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica/genética , Domínios Proteicos/genética , Estrutura Secundária de Proteína/genética , Molécula 1 de Interação Estromal/genética
20.
Nat Commun ; 9(1): 5121, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30504777

RESUMO

α-catenin is a key mechanosensor that forms force-dependent interactions with F-actin, thereby coupling the cadherin-catenin complex to the actin cytoskeleton at adherens junctions (AJs). However, the molecular mechanisms by which α-catenin engages F-actin under tension remained elusive. Here we show that the α1-helix of the α-catenin actin-binding domain (αcat-ABD) is a mechanosensing motif that regulates tension-dependent F-actin binding and bundling. αcat-ABD containing an α1-helix-unfolding mutation (H1) shows enhanced binding to F-actin in vitro. Although full-length α-catenin-H1 can generate epithelial monolayers that resist mechanical disruption, it fails to support normal AJ regulation in vivo. Structural and simulation analyses suggest that α1-helix allosterically controls the actin-binding residue V796 dynamics. Crystal structures of αcat-ABD-H1 homodimer suggest that α-catenin can facilitate actin bundling while it remains bound to E-cadherin. We propose that force-dependent allosteric regulation of αcat-ABD promotes dynamic interactions with F-actin involved in actin bundling, cadherin clustering, and AJ remodeling during tissue morphogenesis.


Assuntos
Junções Aderentes/metabolismo , alfa Catenina/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Animais , Caderinas/química , Caderinas/metabolismo , Humanos , Estrutura Secundária de Proteína , alfa Catenina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA