Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Monit Assess ; 193(11): 704, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34623504

RESUMO

Functional classification of phytoplankton could be a valuable tool in water quality monitoring in the eutrophic riverine ecosystems. This study is novel from the Bangladeshi perspective. In this study, phytoplankton cell density and diversity were studied with particular reference to the functional groups (FGs) approach during pre-monsoon, monsoon, and post-monsoon at four sampling stations in Karatoya River, Bangladesh. A total of 54 phytoplankton species were recorded under four classes, viz. Chlorophyceae (21 species) Cyanophyceae (16 species), Bacillariophyceae (15 species), and Euglenophyceae (2 species). A significantly higher total cell density of phytoplankton was detected during the pre-monsoon season (24.20 × 103 cells/l), while the lowest in monsoon (9.43 × 103 cells/l). The Shannon-Wiener diversity index varied significantly (F = 16.109, P = 000), with the highest value recorded during the post-monsoon season. Analysis of similarity (ANOSIM) identified significant variations among the three seasons (P < 0.0001, R = 0.9518). The similarity percentage (SIMPER) analysis pinpointed Ulothrix spp. (Melosira granulate and Cymbella spp.) as the most contributory species are causing such a noticeable difference. Fifty-four phytoplankton species recorded during the study period were classified into 20 functional groups, whereas D/J/M/MP/X1 was considered the most abundant FG in the Karatoya River. FGs of the Karatoya River were influenced mainly by the nutrients (PO4-P and NO3-N) enrichments. As a novel investigation on FGs of phytoplankton in Bangladesh, this study recommends additional surveys in other rivers and floodplains to improve our understanding of phytoplankton diversity and functional groups.


Assuntos
Fitoplâncton , Rios , Ecossistema , Monitoramento Ambiental , Estações do Ano
2.
Sci Rep ; 11(1): 11377, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059698

RESUMO

A multidisciplinary approach was used to investigate the causes of the distributions and sinking rates of transparent exopolymer particles (TEPs) during the period of September-October (2017) in the Western Pacific Ocean (WPO); the study period was closely dated to a northwest typhoon surge. The present study discussed the impact of biogeophysical features on TEPs and their sinking rates (sTEP) at depths of 0-150 m. During the study, the concentration of TEPs was found to be higher in areas adjacent to the Kuroshio current and in the bottom water layer of the Mindanao upwelling zone due to the widespread distribution of cyanobacteria, i.e., Trichodesmium hildebrandti and T. theibauti. The positive significant regressions of TEP concentrations with Chl-a contents in eddy-driven areas (R2 = 0.73, especially at 100 m (R2 = 0.75)) support this hypothesis. However, low TEP concentrations and TEPs were observed at mixed layer depths (MLDs) in the upwelling zone (Mindanao). Conversely, high TEP concentrations and high sTEP were found at the bottom of the downwelling zone (Halmahera). The geophysical directions of eddies may have caused these conditions. In demonstrating these relations, the average interpretation showed the negative linearity of TEP concentrations with TEPs (R2 = 0.41 ~ 0.65) at such eddies. Additionally, regression curves (R2 = 0.78) indicated that atmospheric pressure played a key role in the changes in TEPs throughout the study area. Diatoms and cyanobacteria also curved the TEPs significantly (R2 = 0.5, P < 0.05) at the surface of the WPO. This study also revealed that TEP concentration contributes less to the average particulate organic carbon in this oligotrophic WPO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA