Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Genet ; 14: 1195566, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37292145

RESUMO

Quantitative trait loci (QTL) is one of the most important steps in marker-assisted selection. Few studies have validated quantitative trait loci for marker-assisted selection of yield traits under drought stress conditions in wheat. A set of 138 highly diverse wheat genotypes were tested under normal and drought stress conditions for 2 years. Plant height, heading date, spike length, grain number per spike, grain yield per spike, and 1000-kernel weight were scored. High genetic variation was found among genotypes in all traits scored under both conditions in the 2 years. The same panel was genotyped using a diversity-array technology (DArT) marker, and a genome-wide association study was performed to find alleles associated with yield traits under all conditions. A set of 191 significant DArT markers were identified in this study. The results of the genome-wide association study revealed eight common markers in wheat that were significantly associated with the same traits under both conditions in the 2 years. Out of the eight markers, seven were located on the D genome except one marker. Four validated markers were located on the 3D chromosome and found in complete linkage disequilibrium. Moreover, these four markers were significantly associated with the heading date under both conditions and the grain yield per spike under drought stress condition in the 2 years. This high-linkage disequilibrium genomic region was located within the TraesCS3D02G002400 gene model. Furthermore, of the eight validated markers, seven were previously reported to be associated with yield traits under normal and drought conditions. The results of this study provided very promising DArT markers that can be used for marker-assisted selection to genetically improve yield traits under normal and drought conditions.

2.
Front Plant Sci ; 7: 795, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375650

RESUMO

This study evaluates the potential for adaptability and tolerance of wheat genotypes (G) to an arid environment. We examined the influence of drought stress (DS) (100, 75, and 50% field capacity), planting times (PT) (16-November, 01-December, 16-December and 01-January), and G (Yocoro Rojo, FKAU-10, Faisalabad-08, and Galaxy L-7096) on phenological development, growth indices, grain yield, and water use efficiency of drip-irrigated wheat. Development measured at five phenological growth stages (GS) (tillering, jointing, booting, heading, and maturity) and growth indices 30, 45, 60, and 75 days after sowing (DAS) were also correlated with final grain yield. Tillering occurred earlier in DS plots, to a maximum of 31 days. Days to complete 50% heading and physiological crop maturity were the most susceptible GS that denoted 31-72% reduction in number of days to complete these GS at severe DS. Wheat G grown with severe DS had the shortest grain filling duration. Genotype Fsd-08 presented greater adaptability to studied arid climate and recorded 31, 35, and 38% longer grain filling period as compared with rest of the G at 100-50% field capacity respectively. December sowing mitigated the drought and delayed planting effects by producing superior growth and yield (2162 kg ha(-1)) at severe DS. Genotypes Fsd-08 and L-7096 attained the minimum plant height (36 cm) and the shortest growth cycle (76 days) for January planting with 50% field capacity. At severe DS leaf area index, dry matter accumulation, crop growth rate and net assimilation rate were decreased by 67, 57, 34, and 38% as compared to non-stressed plots. Genotypes Fsd-08 and F-10 were the superior ones and secured 14-17% higher grain yield than genotype YR for severely stressed plots. The correlation between crop growth indices and grain yield depicted the highest value (0.58-0.71) at 60-75 DAS. So the major contribution of these growth indices toward grain yield was at the start of reproductive phase. It's clear that booting and grain filling are the most sensitive GS that are severely affected by both drought and delay in planting.

3.
Am J Physiol Lung Cell Mol Physiol ; 296(3): L489-99, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19036873

RESUMO

Persistent hypoxia can cause pulmonary arterial hypertension that may be associated with significant remodeling of the pulmonary arteries, including smooth muscle cell proliferation and hypertrophy. We previously demonstrated that the NADPH oxidase homolog NOX4 mediates human pulmonary artery smooth muscle cell (HPASMC) proliferation by transforming growth factor-beta1 (TGF-beta1). We now show that hypoxia increases HPASMC proliferation in vitro, accompanied by increased reactive oxygen species generation and NOX4 gene expression, and is inhibited by antioxidants, the flavoenzyme inhibitor diphenyleneiodonium (DPI), and NOX4 gene silencing. HPASMC proliferation and NOX4 expression are also observed when media from hypoxic HPASMC are added to HPASMC grown in normoxic conditions, suggesting autocrine stimulation. TGF-beta1 and insulin-like growth factor binding protein-3 (IGFBP-3) are both increased in the media of hypoxic HPASMC, and increased IGFBP-3 gene expression is noted in hypoxic HPASMC. Treatment with anti-TGF-beta1 antibody attenuates NOX4 and IGFBP-3 gene expression, accumulation of IGFBP-3 protein in media, and proliferation. Inhibition of IGFBP-3 expression with small interfering RNA (siRNA) decreases NOX4 gene expression and hypoxic proliferation. Conversely, NOX4 silencing does not decrease hypoxic IGFBP-3 gene expression or secreted protein. Smad inhibition does not but the phosphatidylinositol 3-kinase (PI3K) signaling pathway inhibitor LY-294002 does inhibit NOX4 and IGFBP-3 gene expression, IGFBP-3 secretion, and cellular proliferation resulting from hypoxia. Immunoblots from hypoxic HPASMC reveal increased TGF-beta1-mediated phosphorylation of the serine/threonine kinase (Akt), consistent with hypoxia-induced activation of PI3K/Akt signaling pathways to promote proliferation. We conclude that hypoxic HPASMC produce TGF-beta1 that acts in an autocrine fashion to induce IGFBP-3 through PI3K/Akt. IGFBP-3 increases NOX4 gene expression, resulting in HPASMC proliferation. These observations add to our understanding hypoxic pulmonary vascular remodeling.


Assuntos
Hipóxia Celular/fisiologia , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/biossíntese , Miócitos de Músculo Liso/metabolismo , NADPH Oxidases/metabolismo , Artéria Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/biossíntese , Comunicação Autócrina , Hipóxia Celular/genética , Proliferação de Células , Células Cultivadas , Expressão Gênica , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Modelos Biológicos , Miócitos de Músculo Liso/citologia , NADPH Oxidase 4 , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Artéria Pulmonar/citologia , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA