Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Stroke Cerebrovasc Dis ; 27(5): 1200-1211, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29306595

RESUMO

BACKGROUND: Survivors of cardiac arrest often experience neurologic deficits. To date, treatment options are limited. Associated hyperglycemia is believed to further worsen the neurologic outcome. The aim with this study was to characterize expression pathways induced by hyperglycemia in conjunction with global brain ischemia. METHODS: Pigs were randomized to high or normal glucose levels, as regulated by glucose and insulin infusions with target levels of 8.5-10 mM and 4-5.5 mM, respectively. The animals were subjected to 5-minute cardiac arrest followed by 8 minutes of cardiopulmonary resuscitation and direct-current shock to restore spontaneous circulation. Global expression profiling of the cortex using microarrays was performed in both groups. RESULTS: A total of 102 genes differed in expression at P < .001 between the hyperglycemic and the normoglycemic pigs. Several of the most strongly differentially regulated genes were involved in transport and metabolism of glucose. Functional clustering using bioinformatics tools revealed enrichment of multiple biological processes, including membrane processes, ion transport, and glycoproteins. CONCLUSIONS: Hyperglycemia during cardiac arrest leads to differential early gene expression compared with normoglycemia. The functional relevance of these expressional changes cannot be deduced from the current study; however, the identified candidates have been linked to neuroprotective mechanisms and constitute interesting targets for further studies.


Assuntos
Córtex Cerebral/metabolismo , Metabolismo Energético/genética , Parada Cardíaca/genética , Hiperglicemia/genética , Animais , Biologia Computacional , Bases de Dados Genéticas , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Parada Cardíaca/etiologia , Parada Cardíaca/metabolismo , Hiperglicemia/induzido quimicamente , Hiperglicemia/metabolismo , Insulina , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Sus scrofa , Fatores de Tempo
2.
J Neurosci Res ; 93(10): 1519-25, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26068706

RESUMO

A major component of the damaging effect after traumatic brain injury (TBI) is activation of the inflammatory system. In particular, chemokines and chemokine-regulated factors become activated in resident brain cells and signal to different invading immune cells. For evaluation of the effect on invading cells 3 days after injury, mice were treated with a single initial dose of the anti-inflammatory agent Rabeximod in an experimental TBI model. For comparison, mice subjected to TBI were similarly injected with cyclophosphamide. TBI resulted in reduced body weight, an effect further enhanced by administration of Rabeximod, without obvious influence on motor performance. As revealed by quantitative RT-PCR, microglial upregulation of chemokine Ccl3 in response to TBI was unaffected by Rabeximod. Also, injury-induced expression of Cxcl10 in plasmacytoid dendritic cells (DCs) and endothelial expression of platelet selectin (Selp) were uninfluenced by Rabeximod. In contrast, Rabeximod robustly reduced the H2-Aa transcript characteristic for classical DCs defined by CD11c/Itgax in the injured brain. In addition, the expression of lysozyme 2 in large phagocytic cells was impaired by Rabeximod. These results show that Rabeximod exerts a selective and potent inhibition of cells serving cortical antigen presentation after brain trauma.


Assuntos
Anti-Inflamatórios/uso terapêutico , Apresentação de Antígeno/efeitos dos fármacos , Lesões Encefálicas/tratamento farmacológico , Córtex Cerebral/patologia , Indóis/uso terapêutico , Quinoxalinas/uso terapêutico , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Ciclofosfamida/uso terapêutico , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Fatores de Tempo
3.
Eur J Neurosci ; 34(1): 110-23, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21623956

RESUMO

Increasing evidence suggests that interleukin-1ß (IL-1ß) is a key mediator of the inflammatory response following traumatic brain injury (TBI). Recently, we showed that intracerebroventricular administration of an IL-1ß-neutralizing antibody was neuroprotective following TBI in mice. In the present study, an anti-IL-1ß antibody or control antibody was administered intraperitoneally following controlled cortical injury (CCI) TBI or sham injury in 105 mice and we extended our histological, immunological and behavioral analysis. First, we demonstrated that the treatment antibody reached target brain regions of brain-injured animals in high concentrations (> 11 nm) remaining up to 8 days post-TBI. At 48 h post-injury, the anti-IL-1ß treatment attenuated the TBI-induced hemispheric edema (P < 0.05) but not the memory deficits evaluated using the Morris water maze (MWM). Neutralization of IL-1ß did not influence the TBI-induced increases (P < 0.05) in the gene expression of the Ccl3 and Ccr2 chemokines, IL-6 or Gfap. Up to 20 days post-injury, neutralization of IL-1ß was associated with improved visuospatial learning in the MWM, reduced loss of hemispheric tissue and attenuation of the microglial activation caused by TBI (P < 0.05). Motor function using the rotarod and cylinder tests was not affected by the anti-IL-1ß treatment. Our results suggest an important negative role for IL-1ß in TBI. The improved histological and behavioral outcome following anti-IL-1ß treatment also implies that further exploration of IL-1ß-neutralizing compounds as a treatment option for TBI patients is warranted.


Assuntos
Edema Encefálico/etiologia , Edema Encefálico/patologia , Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Transtornos Cognitivos/etiologia , Interleucina-1beta/metabolismo , Animais , Anticorpos/uso terapêutico , Comportamento Animal/fisiologia , Edema Encefálico/fisiopatologia , Lesões Encefálicas/fisiopatologia , Quimiocinas/genética , Quimiocinas/metabolismo , Transtornos Cognitivos/fisiopatologia , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Aprendizagem/fisiologia , Masculino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/metabolismo , Testes Neuropsicológicos , Resultado do Tratamento
4.
Eur J Neurosci ; 31(5): 852-63, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20374285

RESUMO

Traumatic brain injury (TBI) in the mouse results in the rapid appearance of scattered clusters of cells expressing the chemokine Cxcl10 in cortical and subcortical areas. To extend the observation of this unique pattern, we used neuropathological mouse models using quantitative reverse transcriptase-polymerase chain reaction, gene array analysis, in-situ hybridization and flow cytometry. As for TBI, cell clusters of 150-200 mum expressing Cxcl10 characterize the cerebral cortex of mice carrying a transgene encoding the Swedish mutation of amyloid precursor protein, a model of amyloid Alzheimer pathology. The same pattern was found in experimental autoimmune encephalomyelitis in mice modelling multiple sclerosis. In contrast, mice carrying a SOD1(G93A) mutant mimicking amyotrophic lateral sclerosis pathology lacked such cell clusters in the cerebral cortex, whereas clusters appeared in the brainstem and spinal cord. Mice homozygous for a null mutation of the Cxcl10 gene did not show detectable levels of Cxcl10 transcript after TBI, confirming the quantitative reverse transcriptase-polymerase chain reaction and in-situ hybridization signals. Moreover, unbiased microarray expression analysis showed that Cxcl10 was among 112 transcripts in the neocortex upregulated at least threefold in both TBI and ageing TgSwe mice, many of them involved in inflammation. The identity of the Cxcl10(+) cells remains unclear but flow cytometry showed increased numbers of activated microglia/macrophages as well as myeloid dendritic cells in the TBI and experimental autoimmune encephalomyelitis models. It is concluded that the Cxcl10(+) cells appear in the inflamed central nervous system and may represent a novel population of cells that it may be possible to target pharmacologically in a broad range of neurodegenerative conditions.


Assuntos
Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Quimiocina CXCL10/biossíntese , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Animais , Separação Celular , Modelos Animais de Doenças , Citometria de Fluxo , Expressão Gênica , Perfilação da Expressão Gênica , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
J Neurotrauma ; 25(8): 959-74, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18665806

RESUMO

Cerebral gene expressions change in response to traumatic brain injury (TBI), and future trauma treatment may improve with increased knowledge about these regulations. We subjected C57BL/6J mice to injury by controlled cortical impact (CCI). At various time points post-injury, mRNA from neocortex and hippocampus was isolated, and transcriptional alterations studied using quantitative real-time polymerase chain reaction (PCR) and gene array analysis. Spatial distribution of enhanced expression was characterized by in situ hybridization. Products of the upregulated transcripts serve functions in a range of cellular mechanisms, including stress, inflammation and immune responses, and tissue remodeling. We also identified increased transcript levels characterizing reactive astrocytes, oligodendrocytes, and microglia, and furthermore, we demonstrated a novel pattern of scattered cell clusters expressing the chemokine Cxcl10. Notably, a sustained increase in integrin alpha X (Itgax), characterizing antigen-presenting dendritic cells, was found with the transcript located to similar cell clusters. In contrast, T-cell receptor alpha transcript showed only a modest increase. The induced P-selectin (Selp) expression level in endothelial cells, and chemokines from microglia, may guide perivascular accumulation of extravasating inflammatory monocytes differentiating into dendritic cells. In conclusion, our study shows that following TBI, secondary injury chiefly involves inflammatory processes and chemokine signaling, which comprise putative targets for pharmaceutical neuroprotection.


Assuntos
Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Quimiocinas/metabolismo , Animais , Antígeno CD11c/genética , Antígeno CD11c/metabolismo , Quimiocinas/genética , Análise por Conglomerados , Células Dendríticas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/fisiologia , RNA Mensageiro/metabolismo
6.
PLoS One ; 9(8): e104754, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25153123

RESUMO

Brain trauma is known to activate inflammatory cells via various chemokine signals although their interactions remain to be characterized. Mice deficient in Ccl3, Ccr2 or Cxcl10 were compared with wildtype mice after controlled cortical impact injury. Expression of Ccl3 in wildtypes was rapidly upregulated in resident, regularly spaced reactive microglia. Ccl3-deficiency enhanced endothelial expression of platelet selectin and invasion of peripheral inflammatory cells. Appearance of Ccr2 transcripts, encoding the Ccl2 receptor, reflected invasion of lysozyme 2-expressing phagocytes and classical antigen-presenting dendritic cells expressing major histocompatibility complex class II. Ccr2 also directed clustered plasmacytoid dendritic cells positive for the T-cell attracting chemokine Cxcl10. A reduction in Ccr2 and dendritic cells was found in injured wildtype cortex after cyclophosphamide treatment resembling effects of Ccr2-deficiency. The findings demonstrate the feasibility to control inflammation in the injured brain by regulating chemokine-dependent pathways.


Assuntos
Lesões Encefálicas/patologia , Quimiocinas/fisiologia , Células Dendríticas/fisiologia , Animais , Lesões Encefálicas/imunologia , Lesões Encefálicas/metabolismo , Quimiocina CCL3/genética , Quimiocina CCL3/metabolismo , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Quimiocinas/imunologia , Quimiocinas/metabolismo , Ciclofosfamida/farmacologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Deleção de Genes , Inflamação/genética , Inflamação/metabolismo , Inflamação/fisiopatologia , Camundongos , Fagócitos/metabolismo , Fagócitos/fisiologia , Receptores CCR2/genética , Receptores CCR2/metabolismo , Transdução de Sinais
7.
Restor Neurol Neurosci ; 32(5): 717-31, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25079982

RESUMO

PURPOSE: When central nervous system axons are injured, regeneration is partly inhibited by myelin-associated inhibitors (MAIs). Following traumatic brain injury (TBI) in the rat, pharmacological neutralisation of the MAIs Nogo-A and myelin-associated glycoprotein (MAG) resulted in improved functional outcome. In contrast, genetic or pharmacological neutralization of the MAI receptors Nogo-66 receptor 1 (NgR1) or paired-immunoglobulin like receptor-B (PirB) showed an unaltered or impaired outcome following TBI in mice. The aim of the present study was thus to evaluate the MAI expression levels following TBI in mice. METHODS: Quantitative reverse transcriptase PCR (qRT-PCR) was used to measure total RNA isolated from brains of young adult male C57BL/6 mice at one, three or seven days following controlled cortical impact TBI or sham injury. Hippocampal and neocortical tissue ipsi- and contralateral to the injury was analyzed for Nogo-A, oligodendrocyte-myelin glycoprotein (OMgp), MAG, and the MAI receptors PirB and NgR1, including its co-receptor Lingo1. RESULTS: Compared to sham-injured controls, PirB neocortical expression was significantly upregulated at one day and NgR1 expression downregulated at seven days post-TBI. In the hippocampus, transcriptional upregulation was observed in Nogo-A (one day post-injury), MAG and PirB at seven days post-injury. In contrast, the hippocampal transcripts of NgR1 and Lingo1 were decreased at seven days post-injury. The expression of OMgp was unaltered at all time points post-injury. CONCLUSION: These results suggest that early dynamic changes in MAI gene expression occur following TBI in the mouse, particularly in the hippocampus, which may play an inhibitory role for post-injury regeneration and plasticity.


Assuntos
Lesões Encefálicas , Encéfalo/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas de Membrana/metabolismo , Proteínas da Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Imunológicos/metabolismo , Animais , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Modelos Animais de Doenças , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Proteína Glial Fibrilar Ácida , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas da Mielina/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nogo , Receptor Nogo 1 , Glicoproteína Oligodendrócito-Mielina/genética , Glicoproteína Oligodendrócito-Mielina/metabolismo , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/genética , Receptores Imunológicos/genética , Fatores de Tempo
8.
J Neurotrauma ; 29(17): 2660-71, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-22985250

RESUMO

We investigated the role of the axon guidance molecule EphA4 following traumatic brain injury (TBI) in mice. Neutralization of EphA4 improved motor function and axonal regeneration following experimental spinal cord injury (SCI). We hypothesized that genetic absence of EphA4 could improve functional and histological outcome following TBI. Using qRT-PCR in wild-type (WT) mice, we evaluated the EphA4 mRNA levels following controlled cortical impact (CCI) TBI or sham injury and found it to be downregulated in the hippocampus (p<0.05) but not the cortex ipsilateral to the injury at 24 h post-injury. Next, we evaluated the behavioral and histological outcome following CCI using WT mice and Emx1-Cre-driven conditional knockout (cKO) mice. In cKO mice, EphA4 was completely absent in the hippocampus and markedly reduced in the cortical regions from embryonic day 16, which was confirmed using Western blot analysis. EphA4 cKO mice had similar learning and memory abilities at 3 weeks post-TBI compared to WT controls, although brain-injured animals performed worse than sham-injured controls (p<0.05). EphA4 cKO mice performed similarly to WT mice in the rotarod and cylinder tests of motor function up to 29 days post-injury. TBI increased cortical and hippocampal astrocytosis (GFAP immunohistochemistry, p<0.05) and hippocampal sprouting (Timm stain, p<0.05) and induced a marked loss of hemispheric tissue (p<0.05). EphA4 cKO did not alter the histological outcome. Although our results may argue against a beneficial role for EphA4 in the recovery process following TBI, further studies including post-injury pharmacological neutralization of EphA4 are needed to define the role for EphA4 following TBI.


Assuntos
Lesões Encefálicas/patologia , Lesões Encefálicas/psicologia , Receptor EphA4/genética , Animais , Western Blotting , Peso Corporal/fisiologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Coxeadura Animal/etiologia , Coxeadura Animal/psicologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/fisiologia , Equilíbrio Postural/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Receptor EphA4/fisiologia , Caracteres Sexuais
9.
Restor Neurol Neurosci ; 28(3): 311-21, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20479526

RESUMO

PURPOSE: Astroglial responses after traumatic brain injury are difficult to detect with routine morphological methods. The aims for this study were to compare the temporal and spatial expression pattern of vimentin- and glial fibrillary acidic protein (GFAP) in a weight drop model of mild cerebral contusion injury in the rat. We also wanted to study the vimentin response with immunohistochemistry and vimentin mRNA RT-PCR analysis in severe cortical contusion injury produced by the controlled cortical impact in the mouse. METHODS: Vimentin and GFAP immunohistochemistry (1 day, 3 days and 7 days) combined with vimentin mRNA RT-PCR analysis (1 h, 4 h, 22 h, 3 days and 7 days) were used after experimental traumatic brain injury in the rat and mouse. RESULTS: Increases in post-traumatic vimentin mRNA levels in the cortex and in the hippocampus appeared together with vimentin immunoreactivity in astrocytes in the perimeter of the cortical lesion, in the subcortical white matter and in the hippocampus starting at one day after severe trauma. GFAP immunostaining revealed hypertrophic astrocytes peaking at day 3 in the perifocal cortical region. There was no significant increase in GFAP immunoreactivity in the white matter in the rat. However, in the mouse there was a slight increase in the number of GFAP positive cells in this region, 3 days after trauma. Overall the pattern of vimentin immunoreactivity was very similar in the rat and mouse. CONCLUSIONS: Vimentin immunoreactivity was more sensitive than the GFAP staining method to demonstrate the distribution and time course of astrocyte reactions after a contusion injury, especially in the white matter distant from the cortical lesion.


Assuntos
Astrócitos/metabolismo , Lesões Encefálicas/metabolismo , Proteína Glial Fibrilar Ácida/biossíntese , Gliose/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Vimentina/biossíntese , Animais , Astrócitos/patologia , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/genética , Gliose/patologia , Gliose/fisiopatologia , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/biossíntese , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Regulação para Cima/genética , Vimentina/genética
10.
J Neurotrauma ; 26(8): 1307-14, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19317611

RESUMO

Cerebral gene expression changes in response to traumatic brain injury will provide useful information in the search for future trauma treatment. In order to characterize the outcome of mild brain injury, we studied C57BL/6J mice in a weight-drop, closed head injury model. At various times post-injury, mRNA was isolated from neocortex and hippocampus and transcriptional alterations were studied using quantitative reverse transcriptase PCR and gene array analysis. At three days post-injury, the results showed unilateral injury responses, both in neocortex and hippocampus, with the main effect seen on the side of the skull hit by the dropping weight. Upregulated transcripts encoded products characterizing reactive astrocytes, phagocytes, microglia, and immune-reactive cells. Markers for oligodendrocytes and T-cells were not altered. Notably, strong differences in the responses among individual mice were seen (e.g., for the Gfap transcript expressed by reactive astrocytes and the chemokine Ccl3 transcript expressed by activated microglial cells). In conclusion, mild TBI chiefly activates transcripts leading to tissue signaling, inflammatory processes, and chemokine signaling, as in focal brain injury, suggesting putative targets for drug development.


Assuntos
Lesões Encefálicas/metabolismo , Traumatismos Cranianos Fechados/metabolismo , Hipocampo/metabolismo , Inflamação/metabolismo , Neocórtex/metabolismo , Análise de Variância , Animais , Astrócitos/metabolismo , Lesões Encefálicas/genética , Expressão Gênica , Traumatismos Cranianos Fechados/genética , Inflamação/genética , Masculino , Camundongos , Microglia/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fagócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estatísticas não Paramétricas
11.
J Neurosci Res ; 84(1): 47-57, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16583403

RESUMO

Three genetic mouse models were examined to define effects of bone morphogenetic protein (BMP) signalling on gene expression in normal and injured adult brain. CaMKII-Cre eliminated the BMP receptor Acvr1 (Alk2) and the common TGFbeta superfamily signal mediator Smad4 or activated a constitutively active Acvr1 in postnatal forebrain neurons. All mutants followed mendelian ratios, with no overt phenotypic changes. In situ hybridization demonstrated normal patterns of the dendritic marker MAP2 (Mtap2) throughout cortex despite neuron-specific losses of Acvr1 or Smad4. However, strong up-regulation of Mtap2 transcript in these mice was found by quantitative RT-PCR (qRT-PCR), indicating that Mtap2 is normally suppressed by BMP. Traumatic brain injury (TBI) resulted in increases of histone-associated DNA fragments in both control and Smad4-deficient cortex. Several cell-type-specific transcripts known to be involved in injury-related responses were measured by qRT-PCR. Gfap mRNA was strongly up-regulated in controls as well as in the loss-of-BMP-signalling mutants. Notably, activated Acvr1 signalling gave significantly lower TBI-induced up-regulations of Gfap and Phox2a mRNA levels, indicating reductions in astroglial and neuronal reactions to injury. Strong impairment in injury-induced Timp1 transcript up-regulation was also seen in these mice. In contrast, osteopontin (Spp1) transcript levels in activated microglia were not reduced by Acvr1 signalling. Altogether, the data suggest that BMP signalling is dispensable in adult cortical neurons but that augmented BMP signalling affects molecular changes associated with neuronal lesions.


Assuntos
Proteínas Morfogenéticas Ósseas/genética , Lesões Encefálicas/metabolismo , Regulação da Expressão Gênica/fisiologia , Expressão Gênica/fisiologia , Transdução de Sinais/fisiologia , Receptores de Ativinas Tipo I/genética , Análise de Variância , Animais , Comportamento Animal/fisiologia , Peso Corporal/genética , Lesões Encefálicas/patologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Morte Celular/fisiologia , Proteínas de Fluorescência Verde/biossíntese , História Medieval , Hibridização In Situ/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Proteína Smad4/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA