Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 17450, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838753

RESUMO

This study provides the health effects assessment of rice cultivated from plasma-irradiated seeds. The rice (Oryza sativa L.) cultivated from seeds with plasma irradiation showed a growth improvement (slope-ratios of with plasma to without plasma were 1.066, 1.042, and 1.255 for tiller, and earing, and ripening periods, respectively) and an 4% increase in yield. The cultivated rice was used for repeated oral administrations to mice for 4-week period. Distilled water and rice cultivated from seeds without plasma irradiation were also used as control. The weights of the lung, kidney, liver, and spleen, with corresponding average values of 0.22 g, 0.72 g, 2.1 g, and 0.17 g for w/ plasma group and 0.22 g, 0.68 g, 2.16 g, and 0.14 g for w/o plasma group, respectively, showing no effect due to the administration of rice cultivated from plasma-irradiated seeds. Nutritional status, liver function, kidney function, and lipid, neutral fat profiles, and glucose metabolism have no significant difference between with and without plasma groups. These results show no obvious subacute effects were observed on rice grains cultivated and harvested from the mother plant that experienced growth improvement by plasma irradiation. This study provides a new finding that there is no apparent adverse health effect on the grains harvested from the plasma-irradiated seeds.


Assuntos
Oryza , Camundongos , Animais , Sementes , Plasma
2.
Sci Rep ; 12(1): 12525, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869157

RESUMO

Discharge plasma irradiates seeds with reactive oxygen and nitrogen species (RONS). However, RONS introduced in seeds by plasma irradiation have not been successfully detected thus far. This study provides experimental evidence that nitrate ion NO3- is introduced in lettuce seeds as RONS upon irradiation with atmospheric-pressure air dielectric barrier discharge plasma. Plasma irradiation for 5 min promotes seed germination. The components of the plasma-irradiated seeds were examined using electrospray ionization quantum mass spectrometry (ESI QMS), which revealed that the plasma irradiation introduced an ion with a mass of 62 m/z in detectable amounts. This ion was identified as NO3- by liquid chromatography (LC), multiple wavelength detector (MWD), and LC-ESI QMS. A one-dimensional simulation at electron temperature Te = 1 eV, electron density Ne = 1013/m3, and gas temperature Tg = 300 K indicated the introduction of NO3-, involving nitric oxide NO. NO3- is one of the most important ions that trigger signal transduction for germination when introduced in seeds. The scanning electron microscopy (SEM) images revealed that there was no change on the surface of the seeds after plasma irradiation. Plasma irradiation is an effective method of introducing NO3- in seeds in a dry process without causing damage.


Assuntos
Lactuca , Espectrometria de Massas por Ionização por Electrospray , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Óxido Nítrico , Sementes , Espectrometria de Massas por Ionização por Electrospray/métodos
3.
Sci Rep ; 12(1): 1742, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110578

RESUMO

We fabricated nanostructured Ge and GeSn films using He radio-frequency magnetron plasma sputtering deposition. Monodisperse amorphous Ge and GeSn nanoparticles of 30-40 nm size were arranged without aggregation by off-axis sputtering deposition in the high He-gas-pressure range of 0.1 Torr. The Ge film porosity was over 30%. We tested the charge/discharge cycle performance of Li-ion batteries with nanostructured Ge and GeSn anodes. The Ge anode with a dispersed arrangement of nanoparticles showed a Li-storage capacity of 565 mAh/g after the 60th cycle. The capacity retention was markedly improved by the addition of 3 at% Sn in Ge anode. The GeSn anode (3 at% Sn) achieved a higher capacity of 1128 mAh/g after 60 cycles with 92% capacity retention. Precise control of the nano-morphology and electrical characteristics by a single step procedure using low temperature plasma is effective for stable cycling of high-capacity Ge anodes.

4.
Sci Rep ; 10(1): 4669, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170213

RESUMO

Regarding crystalline film growth on large lattice-mismatched substrates, there are two primary modes by which thin films grow on a crystal surface or interface. They are Volmer-Weber (VW: island formation) mode and Stranski-Krastanov (SK: layer-plus-island) mode. Since both growth modes end up in the formation of three-dimensional (3D) islands, fabrication of single crystalline films on lattice-mismatched substrates has been challenging. Here, we demonstrate another growth mode, where a buffer layer consisting of 3D islands initially forms and a relaxed two-dimensional (2D) layer subsequently grows on the buffer layer. This 3D-2D mode transition has been realized using impurities. We observed the 3D-2D mode transition for the case of ZnO film growth on 18%-lattice-mismatched sapphire substrates. First, nano-sized 3D islands grow with the help of nitrogen impurities. Then, the islands coalesce to form a 2D layer after cessation of the nitrogen supply, whereupon an increase in the surface energy may provide a driving force for the coalescence. Finally, the films grow in 2D mode, forming atomically flat terraces. We believe that our findings will offer new opportunities for high-quality film growth of a wide variety of materials that have no lattice-matched substrates.

5.
J Phys Condens Matter ; 28(25): 255001, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27168317

RESUMO

In order to understand the optoelectronic properties of amorphous niobium oxide (a-NbO x ), we have investigated the valence states, local structures, electrical resistivity, and optical absorption of a-NbO x thin films with various oxygen contents. It was found that the valence states of Nb ion in a-NbO x films can be controlled from 5+ to 4+ by reducing oxygen pressure during film deposition at room temperature, together with changing the oxide-ion arrangement around Nb ion from Nb2O5-like to NbO2-like local structure. As a result, a four orders of magnitude reduction in the electrical resistivity of a-NbO x films was observed with decreasing oxygen content, due to the carrier generation caused by the appearance and increase of an oxygen-vacancy-related subgap state working as an electron donor. The tunable optoelectronic properties of a-NbO x films by valence-state-control with oxygen-vacancy formation will be useful for potential flexible optoelectronic device applications.

6.
J Nanosci Nanotechnol ; 16(5): 4875-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27483838

RESUMO

The multiple exciton generation characteristics of quantum dots have been expected to enhance the performance of photochemical solar cells. In previous work, we first introduced Si quantum dot for sensitized solar cells. The Si quantum dots were fabricated by multi-hollow discharge plasma chemical vapor deposition, and were characterized optically and morphologically. The Si quantum dot-sensitized solar cells had poor performance due to significant electron loss by charge recombination. Although the large Si particle size resulted in the exposure of a large TiO2 surface area, there was a limit to ho much the particle size could be decreased due to the reduced absorbance of small particles. Therefore, this work focused on decreasing the internal impedance to improve charge transfer. TiO2 was electronically modified by doping with vanadium, which can improve electron transfer in the TiO2 network, and which is stable in the redox electrolyte. Photogenerated electrons can more easily arrive at the conductive electrode due to the decreased internal impedance. The dark photovoltaic properties confirmed the reduction of charge recombination, and the photon-to-current conversion efficiency reflected the improved electron transfer. Impedance analysis confirmed a decrease in internal impedance and an increased electron lifetime. Consequently, these improvements by vanadium doping enhanced the overall performance of Si quantum dot-sensitized solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA