Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
J Autoimmun ; 146: 103245, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754236

RESUMO

B cell responses to nucleic acid-containing self-antigens that involve intracellular nucleic acid sensors play a crucial role in autoantibody production in SLE. CD72 is an inhibitory B cell co-receptor that down-regulates BCR signaling, and prevents the development of SLE. We previously showed that CD72 recognizes the RNA-containing self-antigen Sm/RNP, a target of SLE-specific autoantibodies, and induces B cell tolerance to Sm/RNP by specifically inhibiting B cell response to this self-antigen. Here, we address whether CD72 inhibits B cell response to ribosomes because the ribosome is an RNA-containing self-antigen and is a target of SLE-specific autoantibodies as well as Sm/RNP. We demonstrate that CD72 recognizes ribosomes as a ligand, and specifically inhibits BCR signaling induced by ribosomes. Although conventional protein antigens by themselves do not induce proliferation of specific B cells, ribosomes induce proliferation of B cells reactive to ribosomes in a manner dependent on RNA. This proliferative response is down-regulated by CD72. These results suggest that ribosomes activate B cells by inducing dual signaling through BCR and intracellular RNA sensors and that CD72 inhibits B cell response to ribosomes. Moreover, CD72-/- but not CD72+/+ mice spontaneously produce anti-ribosome autoantibodies. Taken together, CD72 induces B cell self-tolerance to ribosomes by recognizing ribosomes and inhibiting RNA-dependent B cell response to this self-antigen. CD72 appears to prevent development of SLE by inhibiting autoimmune B cell responses to multiple RNA-containing self-antigens. Because these self-antigens but not protein self-antigens induce RNA-dependent B cell activation, self-tolerance to RNA-containing self-antigens may require a distinct tolerance mechanism mediated by CD72.


Assuntos
Antígenos CD , Antígenos de Diferenciação de Linfócitos B , Autoanticorpos , Autoantígenos , Linfócitos B , Lúpus Eritematoso Sistêmico , Receptores de Antígenos de Linfócitos B , Ribossomos , Transdução de Sinais , Animais , Ribossomos/metabolismo , Ribossomos/imunologia , Camundongos , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/imunologia , Autoanticorpos/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Antígenos de Diferenciação de Linfócitos B/imunologia , Antígenos de Diferenciação de Linfócitos B/metabolismo , Antígenos CD/metabolismo , Antígenos CD/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Transdução de Sinais/imunologia , Autoantígenos/imunologia , Camundongos Knockout , Ativação Linfocitária/imunologia , Proliferação de Células , Tolerância Imunológica , Humanos
2.
Arch Biochem Biophys ; 758: 110068, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909835

RESUMO

Affinity maturation increases antigen-binding affinity and specificity of antibodies by somatic hypermutation. Various monoclonal antibodies against (4-hydroxy-3-nitrophenyl)acetyl (NP) were obtained during affinity maturation. Among them, highly matured anti-NP antibodies, such as E11 and E3, possess Cys96H and Cys100H in the complementarity-determining region 3 of the heavy chain, which would form a disulfide bond. In this study, we evaluated the effects of disulfide bonds on antigen binding by generating single-chain Fv (scFv) antibodies of E11 and its mutants, E11_C96KH/C100EH and E11_C96KH/C100QH, and determined their antigen-binding thermodynamics and kinetics. The binding affinities of the Cys mutants were lower than that of E11 scFv, indicating that the disulfide bond contributed to antigen binding, especially for stable complex formation. This was also supported by the decreased affinity of E11 scFv in the presence of a reducing agent. The crystal structures of NP-free and NP-bound E11 scFvs were determined at high resolution, showing the existence of a disulfide bond between Cys96H and Cys100H, and the antigen recognition mechanism, which could be compared with those of other anti-NP antibodies, such as germline-type N1G9 and matured-type C6, as reported previously. These structures could explain the molecular basis of changes in antigen-binding affinity and thermal stability in the absence or presence of antigens. Small-angle X-ray scattering further showed a local conformational change in E11 scFv upon antigen binding in solution.


Assuntos
Afinidade de Anticorpos , Regiões Determinantes de Complementaridade , Dissulfetos , Anticorpos de Cadeia Única , Dissulfetos/química , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/genética , Regiões Determinantes de Complementaridade/química , Humanos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Animais , Termodinâmica , Cinética , Cristalografia por Raios X , Modelos Moleculares
3.
Chembiochem ; 23(2): e202100435, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34698422

RESUMO

Natural aldolase enzymes and created retro-aldolase protein catalysts often catalyze both aldol and retro-aldol reactions depending on the concentrations of the reactants and the products. Here, we report that the directionality of protein catalysts can be altered by replacing one amino acid. The protein catalyst derived from a scaffold of a previously reported retro-aldolase catalyst, catalyzed aldol reactions more efficiently than the previously reported retro-aldolase catalyst. The retro-aldolase catalyst efficiently catalyzed the retro-aldol reaction but was less efficient in catalyzing the aldol reaction. The results indicate that protein catalysts with varying levels of directionality in usually reversibly catalyzed aldol and retro-aldol reactions can be generated from the same protein scaffold.


Assuntos
Aldeídos/metabolismo , Proteínas/metabolismo , Catálise , Estereoisomerismo
4.
Proteins ; 89(5): 502-511, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33340163

RESUMO

The cutinase-like enzyme from the thermophile Saccharomonospora viridis AHK190, Cut190, is a good candidate to depolymerize polyethylene terephthalate (PET) efficiently. We previously developed a mutant of Cut190 (S226P/R228S), which we designated as Cut190* that has both increased activity and stability and solved its crystal structure. Recently, we showed that mutation of D250C/E296C on one of the Ca2+ -binding sites resulted in a higher thermal stability while retaining its polyesterase activity. In this study, we solved the crystal structures of Cut190* mutants, Q138A/D250C-E296C/Q123H/N202H, designated as Cut190*SS, and its inactive S176A mutant, Cut190*SS_S176A, at high resolution. The overall structures were similar to those of Cut190* and Cut190*S176A reported previously. As expected, Cys250 and Cys296 were closely located to form a disulfide bond, which would assuredly contribute to increase the stability. Isothermal titration calorimetry experiments and 3D Reference Interaction Site Model calculations showed that the metal-binding properties of the Cut190*SS series were different from those of the Cut190* series. However, our results show that binding of Ca2+ to the weak binding site, site 1, would be retained, enabling Cut190*SS to keep its ability to use Ca2+ to accelerate the conformational change from the closed (inactive) to the open (active) form. While increasing the thermal stability, Cut190*SS could still express its enzymatic function. Even after incubation at 70°C, which corresponds to the glass transition temperature of PET, the enzyme retained its activity well, implying a high applicability for industrial PET depolymerization using Cut190*SS.


Assuntos
Actinobacteria/química , Proteínas de Bactérias/química , Cálcio/química , Hidrolases de Éster Carboxílico/química , Poluentes Ambientais/química , Polietilenotereftalatos/química , Actinobacteria/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Cisteína/química , Cisteína/metabolismo , Dissulfetos/química , Dissulfetos/metabolismo , Poluentes Ambientais/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Temperatura Alta , Hidrólise , Modelos Moleculares , Mutação , Polietilenotereftalatos/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
5.
J Autoimmun ; 116: 102571, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33223341

RESUMO

Guillain-Barré syndrome (GBS), including its variant Miller Fisher syndrome (MFS), is an acute peripheral neuropathy that involves autoimmune mechanisms leading to the production of autoantibodies to gangliosides; sialic acid-containing glycosphingolipids. Although association with various genetic polymorphisms in the major histocompatibility complex (MHC) is shown in other autoimmune diseases, GBS is an exception, showing no such link. No significant association was found by genome wide association studies, suggesting that GBS is not associated with common variants. To address the involvement of rare variants in GBS, we analyzed Siglec-10, a sialic acid-recognizing inhibitory receptor expressed on B cells. Here we demonstrate that two rare variants encoding R47Q and A108V substitutions in the ligand-binding domain are significantly accumulated in patients with GBS. Because of strong linkage disequilibrium, there was no patient carrying only one of them. Recombinant Siglec-10 protein containing R47Q but not A108V shows impaired binding to gangliosides. Homology modeling revealed that the R47Q substitution causes marked alteration in the ligand-binding site. Thus, GBS is associated with a rare variant of the SIGLEC10 gene that impairs ligand binding of Siglec-10. Because Siglec-10 regulates antibody production to sialylated antigens, our finding suggests that Siglec-10 regulates development of GBS by suppressing antibody production to gangliosides, with defects in its function predisposing to disease.


Assuntos
Gangliosídeos/imunologia , Predisposição Genética para Doença , Síndrome de Guillain-Barré/imunologia , Lectinas/imunologia , Mutação de Sentido Incorreto/imunologia , Polimorfismo de Nucleotídeo Único/imunologia , Receptores de Superfície Celular/imunologia , Alelos , Sequência de Aminoácidos , Autoanticorpos/imunologia , Sítios de Ligação/genética , Feminino , Gangliosídeos/metabolismo , Frequência do Gene , Genótipo , Síndrome de Guillain-Barré/genética , Síndrome de Guillain-Barré/metabolismo , Humanos , Lectinas/genética , Lectinas/metabolismo , Masculino , Pessoa de Meia-Idade , Síndrome de Miller Fisher/genética , Síndrome de Miller Fisher/imunologia , Síndrome de Miller Fisher/metabolismo , Mutação de Sentido Incorreto/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Homologia de Sequência de Aminoácidos
6.
Bioorg Med Chem ; 27(16): 3674-3681, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31300316

RESUMO

Lithocholic acid (2) was identified as the second endogenous ligand of vitamin D receptor (VDR), though its binding affinity to VDR and its vitamin D activity are very weak compared to those of the active metabolite of vitamin D3, 1α,25-dihydroxyvitamin D3 (1). 3-Acylated lithocholic acids were reported to be slightly more potent than lithocholic acid (2) as VDR agonists. Here, aiming to develop more potent lithocholic acid derivatives, we synthesized several derivatives bearing a 3-sulfonate/carbonate or 3-amino/amide substituent, and examined their differentiation-inducing activity toward human promyelocytic leukemia HL-60 cells. Introduction of a nitrogen atom at the 3-position of lithocholic acid (2) decreased the activity, but compound 6 bearing a 3-methylsulfonate group showed more potent activity than lithocholic acid (2) or its acylated derivatives. The binding of 6 to VDR was confirmed by competitive binding assay and X-ray crystallographic analysis of the complex of VDR ligand-binding domain (LBD) with 6.


Assuntos
Colecalciferol/análogos & derivados , Ácido Litocólico/uso terapêutico , Diferenciação Celular , Humanos , Ácido Litocólico/farmacologia
7.
Biochemistry ; 57(36): 5289-5300, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30110540

RESUMO

A cutinase-type polyesterase from Saccharomonospora viridis AHK190 (Cut190) has been shown to degrade the inner block of polyethylene terephthalate. A unique feature of Cut190 is that its function and stability are regulated by Ca2+ binding. Our previous crystal structure analysis of Cut190S226P showed that one Ca2+ binds to the enzyme, which induces large conformational changes in several loop regions to stabilize an open conformation [Miyakawa, T., et al. (2015) Appl. Microbiol. Biotechnol. 99, 4297]. In this study, to analyze the substrate recognition mechanism of Cut190, we determined the crystal structure of the inactive form of a Cut190 mutant, Cut190*S176A, in complex with calcium ions and/or substrates. We found that three calcium ions bind to Cut190*S176A, which is supported by analysis using native mass spectrometry experiments and 3D Reference Interaction Site Model calculations. The complex structures with the two substrates, monoethyl succinate and monoethyl adipate (engaged and open forms), presumably correspond to the pre- and post-reaction states, as the ester bond is close to the active site and pointing outward from the active site, respectively, for the two complexes. Ca2+ binding induces the pocket to open, enabling the substrate to access the pocket more easily. Molecular dynamics simulations suggest that a post-reaction state in the engaged form presumably exists between the experimentally observed forms, indicating that the substrate would be cleaved in the engaged form and then requires the enzyme to change to the open form to release the product, a process that Ca2+ can greatly accelerate.


Assuntos
Actinomycetales/enzimologia , Cálcio/metabolismo , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Polietilenotereftalatos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica
8.
J Biol Chem ; 292(3): 1052-1060, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27927989

RESUMO

Full activation of T cells and differentiation into effector T cells are essential for many immune responses and require co-stimulatory signaling via the CD28 receptor. Extracellular ligand binding to CD28 recruits protein-tyrosine kinases to its cytoplasmic tail, which contains a YMNM motif. Following phosphorylation of the tyrosine, the proteins growth factor receptor-bound protein 2 (Grb2), Grb2-related adaptor downstream of Shc (Gads), and p85 subunit of phosphoinositide 3-kinase may bind to pYMNM (where pY is phosphotyrosine) via their Src homology 2 (SH2) domains, leading to downstream signaling to distinct immune pathways. These three adaptor proteins bind to the same site on CD28 with variable affinity, and all are important for CD28-mediated co-stimulatory function. However, the mechanism of how these proteins recognize and compete for CD28 is unclear. To visualize their interactions with CD28, we have determined the crystal structures of Gads SH2 and two p85 SH2 domains in complex with a CD28-derived phosphopeptide. The high resolution structures obtained revealed that, whereas the CD28 phosphopeptide bound to Gads SH2 is in a bent conformation similar to that when bound to Grb2 SH2, it adopts a more extended conformation when bound to the N- and C-terminal SH2 domains of p85. These differences observed in the peptide-protein interactions correlated well with the affinity and other thermodynamic parameters for each interaction determined by isothermal titration calorimetry. The detailed insight into these interactions reported here may inform the development of compounds that specifically inhibit the association of CD28 with these adaptor proteins to suppress excessive T cell responses, such as in allergies and autoimmune diseases.


Assuntos
Antígenos CD28/química , Fosfopeptídeos/química , Domínios de Homologia de src/fisiologia , Antígenos CD28/genética , Antígenos CD28/metabolismo , Humanos , Fosfopeptídeos/genética , Fosfopeptídeos/metabolismo , Ligação Proteica/fisiologia , Linfócitos T/química , Linfócitos T/metabolismo , Termodinâmica
9.
Bioorg Med Chem ; 26(8): 1412-1417, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29496413

RESUMO

Catalytic antibody 7B9, which was elicited against p-nitrobenzyl phosphonate transition-state analogue (TSA) 1, hydrolyzes a wide range of p-nitrobenzyl monoesters and thus shows broad substrate tolerance. To reveal the molecular basis of this substrate tolerance, the 7B9 Fab fragment complexed with p-nitrobenzyl ethylphosphonate 2 was crystallized and the three-dimensional structure was determined. The crystal structure showed that the strongly antigenic p-nitrobenzyl moiety occupied a relatively shallow antigen-combining site and therefore the alkyl moiety was located outside the pocket. These results support the observed broad substrate tolerance of 7B9 and help rationalize how 7B9 can catalyze various p-nitrobenzyl ester derivatives. The crystal structure also showed that three amino acid residues (AsnH33, SerH95, and ArgL96) were placed in key positions to form hydrogen bonds with the phosphonate oxygens of the transitions-state analogue. In addition, the role of these amino acid residues was examined by site-directed mutagenesis to alanine: all mutants (AsnH33Ala, SerH95Ala, and ArgL96Ala) showed no detectable catalytic activity. Coupling the findings from our structural studies with these mutagenesis results clarified the structural basis of the observed broad substrate tolerance of antibody 7B9-catalyzed hydrolyses. Our findings provide new strategies for the generation of catalytic antibodies that accept a broad range of substrates, aiding their practical application in synthetic organic chemistry.


Assuntos
Anticorpos Catalíticos/metabolismo , Ésteres/metabolismo , Nitrobenzenos/metabolismo , Biocatálise , Ésteres/química , Hidrólise , Modelos Moleculares , Estrutura Molecular , Nitrobenzenos/química , Relação Estrutura-Atividade
10.
Biochim Biophys Acta ; 1854(10 Pt A): 1438-43, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26160751

RESUMO

Dengue fever is a re-emerging tropical disease and its severe form is caused by cross-reactivity between its four serotypes (DEN1, DEN2, DEN3 and DEN4). The third domain of the viral envelope protein (ED3) contains the two major putative epitopes and is a highly suitable model protein for examining the molecular determinants of a virus' sero-specificity. Here we examine d the sero-specificity and cross-reactivity of the immune response against DEN3 and DEN4 ED3 using six epitope grafted ED3 variants where the surface-exposed epitope residues from DEN3 ED3 were switched to those of DEN4 ED3 and vice versa. We prepared anti-DEN3 and anti-DEN4 ED3 serum by immunizing Swiss albino mice and measured their reactivities against all six grafted mutants. As expected, both sera exhibited strong reactivity against its own serotype's ED3, and little cross-reactivity against their counterpart serotype's ED3s. E2 played a major role in the sero-specificity of anti-DEN3 serum, whereas E1 was important for DEN4 ED3's sero-specificity. Next, the reactivity patterns corroborated our working hypothesis that sero-specificity could be transferred by grafting the surface exposed epitope residues from one serotype to the other. To analyze the above results from a structural viewpoint, we determined the crystal structure of a DEN4 ED3 variant, where E2 was grafted from DEN3 ED3, at 2.78Å resolution and modeled the structures of the five remaining grafted variants by assuming that the overall backbone remained unchanged. The examination of the electrostatic and molecular surfaces of the variants suggested some further rationale for the sero-specificity of the immune responses.


Assuntos
Aminoácidos/química , Vírus da Dengue/química , Epitopos/química , Soros Imunes/química , Proteínas do Envelope Viral/química , Sequência de Aminoácidos , Aminoácidos/imunologia , Animais , Reações Cruzadas , Cristalografia por Raios X , Vírus da Dengue/genética , Vírus da Dengue/imunologia , Epitopos/genética , Epitopos/imunologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Engenharia Genética , Imunização , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Alinhamento de Sequência , Sorotipagem , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
11.
Biochem Biophys Res Commun ; 471(1): 163-8, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26826384

RESUMO

Envelope protein domain III (ED3) of the dengue virus is important for both antibody binding and host cell interaction. Here, we focused on how a L387I mutation in the protein core could take place in DEN4 ED3, but cannot be accommodated in DEN3 ED3 without destabilizing its structure. To this end, we modeled a DEN4_L387I structure using the Penultimate Rotamer Library and taking the DEN4 ED3 main-chain as a fixed template. We found that three out of seven Ile(387) conformers fit in DEN4 ED3 without introducing the severe atomic clashes that are observed when DEN3 serotype's ED3 is used as a template. A more extensive search using 273 side-chain rotamers of the residues surrounding Ile(387) confirmed this prediction. In order to assess the prediction, we determined the crystal structure of DEN4_L387I at 2 Å resolution. Ile(387) indeed adopted one of the three predicted rotamers. Altogether, this study demonstrates that the effects of single mutations are to a large extent successfully predicted by systematically modeling the side-chain structures of the mutated as well as those of its surrounding residues using fixed main-chain structures and assessing inter-atomic steric clashes. More accurate and reliable predictions require considering sub-angstrom main-chain deformation, which remains a challenging task.


Assuntos
Modelos Químicos , Modelos Moleculares , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/ultraestrutura , Sequência de Aminoácidos , Vírus da Dengue , Dados de Sequência Molecular , Mutação Puntual/genética , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas do Envelope Viral/genética
12.
Mol Pharmacol ; 88(2): 316-25, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25993998

RESUMO

Excessive angiogenesis contributes to numerous diseases, including cancer and blinding retinopathy. Antibodies against vascular endothelial growth factor (VEGF) have been approved and are widely used in clinical treatment. Our previous studies using SRPIN340, a small molecule inhibitor of SRPK1 (serine-arginine protein kinase 1), demonstrated that SRPK1 is a potential target for the development of antiangiogenic drugs. In this study, we solved the structure of SRPK1 bound to SRPIN340 by X-ray crystallography. Using pharmacophore docking models followed by in vitro kinase assays, we screened a large-scale chemical library, and thus identified a new inhibitor of SRPK1. This inhibitor, SRPIN803, prevented VEGF production more effectively than SRPIN340 owing to the dual inhibition of SRPK1 and CK2 (casein kinase 2). In a mouse model of age-related macular degeneration, topical administration of eye ointment containing SRPIN803 significantly inhibited choroidal neovascularization, suggesting a clinical potential of SRPIN803 as a topical ointment for ocular neovascularization. Thus SRPIN803 merits further investigation as a novel inhibitor of VEGF.


Assuntos
Caseína Quinase II/antagonistas & inibidores , Neovascularização de Coroide/tratamento farmacológico , Inibidores Enzimáticos/administração & dosagem , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Pirimidinonas/administração & dosagem , Bibliotecas de Moléculas Pequenas/administração & dosagem , Tiadiazóis/administração & dosagem , Administração Tópica , Animais , Linhagem Celular , Cristalografia por Raios X , Modelos Animais de Doenças , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Degeneração Macular/tratamento farmacológico , Degeneração Macular/patologia , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , Niacinamida/análogos & derivados , Niacinamida/química , Piperidinas/química , Proteínas Serina-Treonina Quinases/metabolismo , Pirimidinonas/química , Pirimidinonas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Tiadiazóis/química , Tiadiazóis/farmacologia
13.
Bioorg Med Chem ; 23(22): 7274-81, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26515040

RESUMO

1α,25-Dihydroxyvitamin D3 exerts its actions by binding to vitamin D receptor (VDR). We are continuing the study related to the alteration of pocket structure of VDR by 22-alkyl substituent of ligands and the relationships between the alteration and agonistic/antagonistic activity. Previously we reported that compounds 2 (22-H), 3 (22S-Et), and 4 (22S-Bu) are VDR agonist, partial agonist and antagonist, respectively. Here, we describe the synthesis and biological evaluation of 22S-hexyl analog 5 (22S-Hex), which was designed to be a stronger VDR antagonist than 4. Unexpectedly, 5 showed partial agonistic but not antagonistic activity when bound to VDR, indicating that it is not necessarily true that the bulkier the side chain is, the stronger the antagonistic activity will be. X-ray crystallographic analysis of the VDR-ligand-binding domain (VDR-LBD) accommodating compound 5 indicated that the partial agonist activity of 5 is dependent on the mixed population of the agonistic and antagonistic conformations. Binding of compound 5 may not bring the complex into the only antagonistic conformation due to the large conformational change of the VDR-LBD. From this study it was found that fine tuning of agonistic/antagonistic activity for VDR is possible by 22-alkyl chain length of ligands.


Assuntos
Calcitriol/análogos & derivados , Receptores de Calcitriol/química , Animais , Sítios de Ligação , Células COS , Calcitriol/síntese química , Calcitriol/metabolismo , Chlorocebus aethiops , Cristalografia por Raios X , Genes Reporter , Humanos , Ligantes , Conformação Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Calcitriol/agonistas , Receptores de Calcitriol/antagonistas & inibidores , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Ativação Transcricional
14.
Bioorg Med Chem ; 23(15): 4434-4441, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26145823

RESUMO

Dysregulation of dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) has been demonstrated in several pathological conditions, including Alzheimer's disease and cancer progression. It has been recently reported that a gain of function-mutation in the human DYRK1B gene exacerbates metabolic syndrome by enhancing obesity. In the previous study, we developed an inhibitor of DYRK family kinases (INDY) and demonstrated that INDY suppresses the pathological phenotypes induced by overexpression of DYRK1A or DYRK1B in cellular and animal models. In this study, we designed and synthesized a novel inhibitor of DYRK family kinases based on the crystal structure of the DYRK1A/INDY complex by replacing the phenol group of INDY with dibenzofuran to produce a derivative, named BINDY. This compound exhibited potent and selective inhibitory activity toward DYRK family kinases in an in vitro assay. Furthermore, treatment of 3T3-L1 pre-adipocytes with BINDY hampered adipogenesis by suppressing gene expression of the critical transcription factors PPARγ and C/EBPα. This study indicates the possibility of BINDY as a potential drug for metabolic syndrome.


Assuntos
Benzofuranos/síntese química , Benzotiazóis/síntese química , Desenho de Fármacos , Inibidores de Proteínas Quinases/síntese química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Células 3T3-L1 , Adipogenia/efeitos dos fármacos , Animais , Benzofuranos/química , Benzofuranos/toxicidade , Benzotiazóis/química , Benzotiazóis/toxicidade , Sítios de Ligação , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Humanos , Camundongos , Simulação de Acoplamento Molecular , PPAR gama/genética , PPAR gama/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/toxicidade , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Quinases Dyrk
15.
J Lipid Res ; 54(8): 2206-2213, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23723390

RESUMO

The secondary bile acid lithocholic acid (LCA) and its derivatives act as selective modulators of the vitamin D receptor (VDR), although their structures fundamentally differ from that of the natural hormone 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3)]. Here, we have determined the crystal structures of the ligand-binding domain of rat VDR (VDR-LBD) in ternary complexes with a synthetic partial peptide of the coactivator MED1 (mediator of RNA polymerase II transcription subunit 1) and four ligands, LCA, 3-keto LCA, LCA acetate, and LCA propionate, with the goal of elucidating their agonistic mechanism. LCA and its derivatives bind to the same ligand-binding pocket (LBP) of VDR-LBD that 1,25(OH)2D3 binds to, but in the opposite orientation; their A-ring is positioned at the top of the LBP, whereas their acyclic tail is located at the bottom of the LBP. However, most of the hydrophobic and hydrophilic interactions observed in the complex with 1,25(OH)2D3 are reproduced in the complexes with LCA and its derivatives. Additional interactions between VDR-LBD and the C-3 substituents of the A-ring are also observed in the complexes with LCA and its derivatives. These may result in the observed difference in the potency among the LCA-type ligands.


Assuntos
Ácido Litocólico/análogos & derivados , Ácido Litocólico/metabolismo , Receptores de Calcitriol/química , Receptores de Calcitriol/metabolismo , Animais , Sítios de Ligação , Cristalografia por Raios X , Ligação de Hidrogênio , Ligantes , Ácido Litocólico/química , Ácido Litocólico/farmacologia , Modelos Moleculares , Estrutura Terciária de Proteína , Ratos , Receptores de Calcitriol/agonistas , Receptores de Calcitriol/isolamento & purificação
16.
Protein Sci ; 32(10): e4775, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37661929

RESUMO

We have applied our advanced computational and experimental methodologies to investigate the complex structure and binding mechanism of a modified Wilms' Tumor 1 (mWT1) protein epitope to the understudied Asian-dominant allele HLA-A*24:02 (HLA-A24) in aqueous solution. We have applied our developed multicanonical molecular dynamics (McMD)-based dynamic docking method to analyze the binding pathway and mechanism, which we verified by comparing the highest probability structures from simulation with our experimentally solved x-ray crystal structure. Subsequent path sampling MD simulations elucidated the atomic details of the binding process and indicated that first an encounter complex is formed between the N-terminal's positive charge of the 9-residue mWT1 fragment peptide and a cluster of negative residues on the surface of HLA-A24, with the major histocompatibility complex (MHC) molecule preferring a predominantly closed conformation. The peptide first binds to this closed MHC conformation, forming an encounter complex, after which the binding site opens due to increased entropy of the binding site, allowing the peptide to bind to form the native complex structure. Further sequence and structure analyses also suggest that although the peptide loading complex would help with stabilizing the MHC molecule, the binding depends in a large part on the intrinsic affinity between the MHC molecule and the antigen peptide. Finally, our computational tools and analyses can be of great benefit to study the binding mechanism of different MHC types to their antigens, where it could also be useful in the development of higher affinity variant peptides and for personalized medicine.

17.
Biochemistry ; 51(7): 1510-7, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22304662

RESUMO

Artificial zinc finger proteins (ZFPs) consist of Cys(2)-His(2)-type modules composed of ∼30 amino acids with a ßßα structure that coordinates a zinc ion. ZFPs that recognize specific DNA target sequences can substitute for the binding domains of enzymes that act on DNA to create designer enzymes with programmable sequence specificity. The most studied of these engineered enzymes are zinc finger nucleases (ZFNs). ZFNs have been widely used to model organisms and are currently in human clinical trials with an aim of therapeutic gene editing. Difficulties with ZFNs arise from unpredictable mutations caused by nonhomologous end joining and off-target DNA cleavage and mutagenesis. A more recent strategy that aims to address the shortcomings of ZFNs involves zinc finger recombinases (ZFRs). A thorough understanding of ZFRs and methods for their modification promises powerful new tools for gene manipulation in model organisms as well as in gene therapy. In an effort to design efficient and specific ZFRs, the effects of the DNA binding affinity of the zinc finger domains and the linker sequence between ZFPs and recombinase catalytic domains have been assessed. A plasmid system containing ZFR target sites was constructed for evaluation of catalytic activities of ZFRs with variable linker lengths and numbers of zinc finger modules. Recombination efficiencies were evaluated by restriction enzyme analysis of isolated plasmids after reaction in Escherichia coli and changes in EGFP fluorescence in mammalian cells. The results provide information relevant to the design of ZFRs that will be useful for sequence-specific genome modification.


Assuntos
DNA/química , Sequência de Aminoácidos , Animais , Células CHO , Catálise , Separação Celular , Cricetinae , Escherichia coli/metabolismo , Citometria de Fluxo , Corantes Fluorescentes/química , Humanos , Conformação Molecular , Dados de Sequência Molecular , Mutagênese , Ligação Proteica , Estrutura Terciária de Proteína , Recombinação Genética , Homologia de Sequência de Aminoácidos , Dedos de Zinco
18.
Glycoconj J ; 29(1): 77-85, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22198269

RESUMO

A carbohydrate-binding module from family 13 (CBM13), appended to the catalytic domain of endo-1,3-ß-glucanase from Cellulosimicrobium cellulans, was overexpressed in E. coli, and its interactions with ß-glucans, laminarin and laminarioligosaccharides, were analyzed using surface plasmon resonance biosensor and isothermal titration calorimetry. The association constants for laminarin and laminarioligosaccharides were determined to be approximately 10(6) M(-1) and 10(4) M(-1), respectively, indicating that 2 or 3 binding sites in the α-, ß-, and γ-repeats of CBM13 are involved in laminarin binding in a cooperative manner. The binding avidity is approximately 2-orders higher than the monovalent binding affinity. Mutational analysis of the conserved Asp residues in the respective repeats showed that the α-repeat primarily contributes to ß-glucan binding. A Trp residue is predicted to be exposed to the solvent only in the α-repeat and would contribute to ß-glucan binding. The α-repeat bound ß-glucan with an affinity of approximately 10(4) M(-1), and the other repeats additionally bound laminarin, resulting in the increased binding avidity. This binding is unique compared to the recognition mode of another CBM13 from Streptomyces lividans xylanase.


Assuntos
Actinomycetales/enzimologia , Ácido Aspártico/química , Glucana Endo-1,3-beta-D-Glucosidase/química , Lectinas/química , Polissacarídeos/química , Triptofano/química , Sequência de Aminoácidos , Sítios de Ligação , Calorimetria , Domínio Catalítico/fisiologia , Dicroísmo Circular , Glucanos , Lectinas/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Sequências Repetitivas de Aminoácidos , Homologia de Sequência de Aminoácidos , Streptomyces/enzimologia , Ressonância de Plasmônio de Superfície , beta-Glucanas/metabolismo
19.
Biophys Rev ; 14(6): 1211-1222, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36620377

RESUMO

Receiving his initial training jointly in theoretical and applied physics at the University of Tokyo, Professor Haruki Nakamura has had a long and eventful scientific career, along the way helping to shape the way that biophysics is carried out in Japan. Concentrating his research efforts on the simulation of protein structure and function, he has, over his career arc, acted as director of the Institute for Protein Research (Osaka, Japan), director of the Protein Data Bank of Japan (PDBj), president of the Biophysical Society of Japan (BSJ), president of the Protein Science Society of Japan (PSSJ), and group leader and professor of Bioinformatics and Computational Structural Biology at Osaka University. In 2022, Prof. Haruki Nakamura turned 70 years old, and to mark this occasion, his scientific colleagues from around the world have combined their efforts to produce this Festschrift Issue of the IUPAB Biophysical Reviews journal around the theme of the computational biophysics and structural biology of proteins.

20.
Biophys Physicobiol ; 19: 1-10, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35797404

RESUMO

Ever since the historic discovery of the cooperative oxygenation of its multiple subunits, hemoglobin (Hb) has been among the most exhaustively studied allosteric proteins. However, the lack of structural information on the intermediates between oxygenated and deoxygenated forms prevents our detailed understanding of the molecular mechanism of its allostery. It has been difficult to prepare crystals of intact oxy-deoxy intermediates and to individually identify the oxygen saturation for each subunit. However, our recent crystallographic studies have demonstrated that giant Hbs from annelids are suitable for overcoming these problems and can provide abundant information on oxy-deoxy intermediate structures. Here, we report the crystal structures of oxy-deoxy intermediates of a 400 kDa Hb (V2Hb) from the annelid Lamellibrachia satsuma, following up on a series of previous studies of similar giant Hbs. Four intermediate structures had average oxygen saturations of 78%, 69%, 55%, and 26%, as determined by the occupancy refinement of the bound oxygen based on ambient temperature factors. The structures demonstrate that the cooperative oxygen dissociation is weaker, large ternary and quaternary changes are induced at a later stage of the oxygen dissociation process, and the ternary and quaternary changes are smaller with local perturbations. Nonetheless, the overall structural transition seemed to proceed in the manner of the MWC two-state model. Our crystallographic snapshots of the allosteric transition of V2Hb provide important experimental evidence for a more detailed understanding of the allostery of Hbs by extension of the Monod-Wyman-Changeux (MWC) model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA