Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Development ; 151(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39206939

RESUMO

Shoot apical meristems (SAMs) continuously initiate organ formation and maintain pluripotency through dynamic genetic regulations and cell-to-cell communications. The activity of meristems directly affects the plant's structure by determining the number and arrangement of organs and tissues. We have taken a forward genetic approach to dissect the genetic pathway that controls cell differentiation around the SAM. The rice mutants, adaxial-abaxial bipolar leaf 1 and 2 (abl1 and abl2), produce an ectopic leaf that is fused back-to-back with the fourth leaf, the first leaf produced after embryogenesis. The abaxial-abaxial fusion is associated with the formation of an ectopic shoot meristem at the adaxial base of the fourth leaf primordium. We cloned the ABL1 and ABL2 genes of rice by mapping their chromosomal positions. ABL1 encodes OsHK6, a histidine kinase, and ABL2 encodes a transcription factor, OSHB3 (Class III homeodomain leucine zipper). Expression analyses of these mutant genes as well as OSH1, a rice ortholog of the Arabidopsis STM gene, unveiled a regulatory circuit that controls the formation of an ectopic meristem near the SAM at germination.


Assuntos
Citocininas , Regulação da Expressão Gênica de Plantas , Meristema , Oryza , Folhas de Planta , Proteínas de Plantas , Meristema/genética , Meristema/metabolismo , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Citocininas/metabolismo , Citocininas/genética , Folhas de Planta/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Mutação/genética , Genes de Plantas , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética
2.
PLoS Genet ; 17(5): e1009292, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33970916

RESUMO

The plastochron, the time interval between the formation of two successive leaves, is an important determinant of plant architecture. We genetically and phenotypically investigated many-noded dwarf (mnd) mutants in barley. The mnd mutants exhibited a shortened plastochron and a decreased leaf blade length, and resembled previously reported plastochron1 (pla1), pla2, and pla3 mutants in rice. In addition, the maturation of mnd leaves was accelerated, similar to pla mutants in rice. Several barley mnd alleles were derived from three genes-MND1, MND4, and MND8. Although MND4 coincided with a cytochrome P450 family gene that is a homolog of rice PLA1, we clarified that MND1 and MND8 encode an N-acetyltransferase-like protein and a MATE transporter-family protein, which are respectively orthologs of rice GW6a and maize BIGE1 and unrelated to PLA2 or PLA3. Expression analyses of the three MND genes revealed that MND1 and MND4 were expressed in limited regions of the shoot apical meristem and leaf primordia, but MND8 did not exhibit a specific expression pattern around the shoot apex. In addition, the expression levels of the three genes were interdependent among the various mutant backgrounds. Genetic analyses using the double mutants mnd4mnd8 and mnd1mnd8 indicated that MND1 and MND4 regulate the plastochron independently of MND8, suggesting that the plastochron in barley is controlled by multiple genetic pathways involving MND1, MND4, and MND8. Correlation analysis between leaf number and leaf blade length indicated that both traits exhibited a strong negative association among different genetic backgrounds but not in the same genetic background. We propose that MND genes function in the regulation of the plastochron and leaf growth and revealed conserved and diverse aspects of plastochron regulation via comparative analysis of barley and rice.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hordeum/crescimento & desenvolvimento , Hordeum/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Alelos , Sistemas CRISPR-Cas/genética , Divisão Celular , Hordeum/citologia , Mutação , Oryza/genética , Fenótipo , Células Vegetais , Folhas de Planta/citologia , Fatores de Tempo
3.
Plant Cell Physiol ; 63(2): 265-278, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34865135

RESUMO

The molecular basis for leaf development, a major focus in developmental biology, remains unclear in the monocotyledonous grass, rice (Oryza sativa). Here, we performed a mutant screen in rice and identified an AP2-type transcription factor family protein, NARROW AND DWARF LEAF1 (NDL1). NDL1 is the ortholog of Arabidopsis thaliana (subsequently called Arabidopsis) ENHANCER OF SHOOT REGENERATION1 (ESR1)/DORNRÖSCHEN (DRN) and mediates leaf development and maintenance of the shoot apical meristem (SAM). Loss of function of NDL1 results in bladeless leaves and SAMs that are flat, rather than dome-shaped, and lack cell proliferation activity. This loss of function also causes reduced auxin signaling. Moreover, as is the case with Arabidopsis ESR1/DRN, NDL1 plays crucial roles in shoot regeneration. Importantly, we found that NDL1 is not expressed in the SAM but is expressed in leaf primordia. We propose that NDL1 cell autonomously regulates leaf development, but non-cell autonomously regulates SAM maintenance in rice.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oryza , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/genética , Meristema/metabolismo , Mutação/genética , Oryza/genética , Oryza/metabolismo
4.
Plant Cell Physiol ; 63(2): 265-278, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35166362

RESUMO

The molecular basis for leaf development, a major focus in developmental biology, remains unclear in the monocotyledonous grass, rice (Oryza sativa). Here, we performed a mutant screen in rice and identified an AP2-type transcription factor family protein, NARROW AND DWARF LEAF1 (NDL1). NDL1 is the ortholog of Arabidopsis thaliana (subsequently called Arabidopsis) ENHANCER OF SHOOT REGENERATION1 (ESR1)/DORNRÖSCHEN (DRN) and mediates leaf development and maintenance of the shoot apical meristem (SAM). Loss of function of NDL1 results in bladeless leaves and SAMs that are flat, rather than dome-shaped, and lack cell proliferation activity. This loss of function also causes reduced auxin signaling. Moreover, as is the case with Arabidopsis ESR1/DRN, NDL1 plays crucial roles in shoot regeneration. Importantly, we found that NDL1 is not expressed in the SAM but is expressed in leaf primordia. We propose that NDL1 cell autonomously regulates leaf development, but non-cell autonomously regulates SAM maintenance in rice.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oryza , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/genética , Meristema/metabolismo , Mutação/genética , Oryza/genética , Oryza/metabolismo
5.
Development ; 146(13)2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31118231

RESUMO

Asymmetric cell division is a key step in cellular differentiation in multicellular organisms. In plants, asymmetric zygotic division produces the apical and basal cells. The mitogen-activated protein kinase (MPK) cascade in Arabidopsis acts in asymmetric divisions such as zygotic division and stomatal development, but whether the effect on cellular differentiation of this cascade is direct or indirect following asymmetric division is not clear. Here, we report the analysis of a rice mutant, globular embryo 4 (gle4). In two- and four-cell-stage embryos, asymmetric zygotic division and subsequent cell division patterns were indistinguishable between the wild type and gle4 mutants. However, marker gene expression and transcriptome analyses showed that specification of the basal region was compromised in gle4 We found that GLE4 encodes MPK6 and that GLE4/MPK6 is essential in cellular differentiation rather than in asymmetric zygotic division. Our findings provide a new insight into the role of MPK in plant development. We propose that the regulation of asymmetric zygotic division is separate from the regulation of cellular differentiation that leads to apical-basal polarity.


Assuntos
Divisão Celular Assimétrica/genética , Proteína Quinase 6 Ativada por Mitógeno/fisiologia , Oryza , Zigoto/citologia , Divisão Celular/genética , Clonagem Molecular , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteína Quinase 6 Ativada por Mitógeno/genética , Oryza/embriologia , Oryza/enzimologia , Oryza/genética , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/metabolismo
6.
BMC Genomics ; 22(1): 169, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750294

RESUMO

BACKGROUND: Rice leaves consist of three distinct regions along a proximal-distal axis, namely the leaf blade, sheath, and blade-sheath boundary region. Each region has a unique morphology and function, but the genetic programs underlying the development of each region are poorly understood. To fully elucidate rice leaf development and discover genes with unique functions in rice and grasses, it is crucial to explore genome-wide transcriptional profiles during the development of the three regions. RESULTS: In this study, we performed microarray analysis to profile the spatial and temporal patterns of gene expression in the rice leaf using dissected parts of leaves sampled in broad developmental stages. The dynamics in each region revealed that the transcriptomes changed dramatically throughout the progress of tissue differentiation, and those of the leaf blade and sheath differed greatly at the mature stage. Cluster analysis of expression patterns among leaf parts revealed groups of genes that may be involved in specific biological processes related to rice leaf development. Moreover, we found novel genes potentially involved in rice leaf development using a combination of transcriptome data and in situ hybridization, and analyzed their spatial expression patterns at high resolution. We successfully identified multiple genes that exhibit localized expression in tissues characteristic of rice or grass leaves. CONCLUSIONS: Although the genetic mechanisms of leaf development have been elucidated in several eudicots, direct application of that information to rice and grasses is not appropriate due to the morphological and developmental differences between them. Our analysis provides not only insights into the development of rice leaves but also expression profiles that serve as a valuable resource for gene discovery. The genes and gene clusters identified in this study may facilitate future research on the unique developmental mechanisms of rice leaves.


Assuntos
Oryza , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
7.
Development ; 145(7)2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29567670

RESUMO

Regulation of cell proliferation is crucial for establishing the shape of plant leaves. We have identified MAKIBA3 (MKB3), a loss-of-function mutant of which exhibits a narrowed- and rolled-leaf phenotype in rice. MKB3 was found to be an ortholog of Arabidopsis ANGUSTIFOLIA3 (AN3), which positively regulates cell proliferation. The reduced leaf size of mkb3 plants with enlarged cells and the increased size of MKB3-overexpressing leaves with normal-sized cells indicate that MKB3 is a positive regulator of leaf proliferation and that mkb3 mutation triggers a compensation syndrome, as does Arabidopsis an3 Expression analysis revealed that MKB3 is predominantly expressed on the epidermis of leaf primordia, which is different from the location of AN3 A protein movement assay demonstrated that MKB3 moves from an MKB3-expressing domain to a non-expressing domain, which is required for normal leaf development. Our results suggest that rice MKB3 and Arabidopsis AN3 have conserved functions and effects on leaf development. However, the expression pattern of MKB3 and direction of protein movement are different between rice and Arabidopsis, which might reflect differences in leaf primordia development in these two species.


Assuntos
Arabidopsis/metabolismo , Proliferação de Células/genética , Oryza/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Transativadores/metabolismo , Proteínas de Arabidopsis/metabolismo , Crescimento Celular , Regulação da Expressão Gênica de Plantas , Mutação , Oryza/genética , Fenótipo , Folhas de Planta/metabolismo , Transativadores/genética
8.
Development ; 143(7): 1217-27, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26903508

RESUMO

Embryogenesis in rice is different from that of most dicotolydonous plants in that it shows a non-stereotypic cell division pattern, formation of dorsal-ventral polarity, and endogenous initiation of the radicle. To reveal the transcriptional features associated with developmental events during rice early embryogenesis, we used microarray analysis coupled with laser microdissection to obtain both spatial and temporal transcription profiles. Our results allowed us to determine spatial expression foci for each expressed gene in the globular embryo, which revealed the importance of phytohormone-related genes and a suite of transcription factors to early embryogenesis. Our analysis showed the polarized expression of a small number of genes along the apical-basal and dorsal-ventral axes in the globular embryo, which tended to fluctuate in later developmental stages. We also analyzed gene expression patterns in the early globular embryo and how this relates to expression in embryonic organs at later stages. We confirmed the accuracy of the expression patterns found by microarray analysis of embryo subdomains using in situ hybridization. Our study identified homologous genes from Arabidopsis thaliana with known functions in embryogenesis in addition to unique and uncharacterized genes that show polarized expression patterns during embryogenesis. The results of this study are presented in a database to provide a framework for spatiotemporal gene expression during rice embryogenesis, to serve as a resource for future functional analysis of genes, and as a basis for comparative studies of plant embryogenesis.


Assuntos
Arabidopsis/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Oryza/embriologia , Reguladores de Crescimento de Plantas/genética , Divisão Celular/fisiologia , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos
9.
Development ; 143(18): 3407-16, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27578792

RESUMO

Juvenile-to-adult phase transition is an important shift for the acquisition of adult vegetative characteristics and subsequent reproductive competence. We identified a recessive precocious (pre) mutant exhibiting a long leaf phenotype in rice. The long leaf phenotype is conspicuous in the second to the fourth leaves, which are juvenile and juvenile-to-adult transition leaves. We found that morphological and physiological traits, such as midrib formation, shoot meristem size, photosynthetic rate and plastochron, in juvenile and juvenile-to-adult transition stages of the pre mutant have precociously acquired adult characteristics. In agreement with these results, expression patterns of miR156 and miR172, which are microRNAs regulating phase change, support the accelerated juvenile-to-adult phase change in the pre mutant. The mutated gene encodes an allene oxide synthase (OsAOS1), which is a key enzyme for the biosynthesis of jasmonic acid (JA). The pre mutant showed a low level of JA and enhanced sensitivity to gibberellic acid, which promotes the phase change in some plant species. We also show that prolonged plastochron in the pre mutant is caused by accelerated PLASTOCHRON1 (PLA1) function. The present study reveals a substantial role of JA as a negative regulator of vegetative phase change.


Assuntos
Ciclopentanos/metabolismo , Oryza/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/genética , Proteínas de Plantas/genética
10.
Plant Cell Physiol ; 59(2): 376-391, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29272531

RESUMO

In several eudicot species, one copy of each member of the WUSCHEL-RELATED HOMEOBOX (WOX) gene family, WOX1 and WOX3, is redundantly or differentially involved in lateral leaf outgrowth, whereas only the WOX3 gene regulating the lateral domain of leaf development has been reported in grass. In this study, we show that a WOX3 gene, LEAF LATERAL SYMMETRY1 (LSY1), regulates lateral leaf development in a different manner ftom that of other duplicated paralogs of WOX3, NARROW LEAF2 (NAL2)/NAL3, in rice. A loss-of-function mutant of LSY1 exhibited an asymmetrical defect from early leaf development, which is different from a symmetric defect in a double loss-of-function mutant of NAL2/3, whereas the expression of both genes was observed in a similar domain in the margins of leaf primordia. Unlike NAL2/3, overexpression of LSY1 produced malformed leaves whose margins were curled adaxially. Expression domains and the level of adaxial/abaxial marker genes were affected in the LSY1-overexpressing plants, indicating that LSY1 is involved in regulation of adaxial-abaxial patterning at the margins of the leaf primordia. Additive phenotypes in some leaf traits of lsy1 nal2/3 triple mutants and the unchanged level of NAL2/3 expression in the lsy1 background suggested that LSY1 regulates lateral leaf development independently of NAL2/3. Our results indicated that all of the rice WOX3 genes are involved in leaf lateral outgrowth, but the functions of LSY1 and NAL2/3 have diverged. We propose that the function of WOX3 and the regulatory mode of leaf development in rice are comparable with those of WOX1/WOX3 in eudicot species.


Assuntos
Família Multigênica , Organogênese/genética , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Modelos Biológicos , Fenótipo , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Reprodução
11.
New Phytol ; 218(4): 1558-1569, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29498045

RESUMO

Floods impede gas (O2 and CO2 ) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films on hydrophobic leaves, but the genetic regulation of this mechanism is unknown. We used a rice mutant (dripping wet leaf 7, drp7) which does not retain gas films on leaves, and its wild-type (Kinmaze), in gene discovery for this trait. Gene complementation was tested in transgenic lines. Functional properties of leaves as related to gas film retention and underwater photosynthesis were evaluated. Leaf Gas Film 1 (LGF1) was identified as the gene determining leaf gas films. LGF1 regulates C30 primary alcohol synthesis, which is necessary for abundant epicuticular wax platelets, leaf hydrophobicity and gas films on submerged leaves. This trait enhanced underwater photosynthesis 8.2-fold and contributes to submergence tolerance. Gene function was verified by a complementation test of LGF1 expressed in the drp7 mutant background, which restored C30 primary alcohol synthesis, wax platelet abundance, leaf hydrophobicity, gas film retention, and underwater photosynthesis. The discovery of LGF1 provides an opportunity to better understand variation amongst rice genotypes for gas film retention ability and to target various alleles in breeding for improved submergence tolerance for yield stability in flood-prone areas.


Assuntos
Adaptação Fisiológica , Inundações , Gases/metabolismo , Genes de Plantas , Interações Hidrofóbicas e Hidrofílicas , Oryza/genética , Folhas de Planta/fisiologia , Ceras/metabolismo , Sequência de Bases , Vias Biossintéticas , Teste de Complementação Genética , Mutação/genética , Oryza/fisiologia , Fotossíntese , Epiderme Vegetal/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Breed Sci ; 73(1): 1-2, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37168812
13.
Breed Sci ; 66(3): 416-24, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27436952

RESUMO

Barley (Hordeum vulgare L.) is the fourth most-produced cereal in the world and is mainly utilized as animal feed and malts. Recently barley attracts considerable attentions as healthy food rich in dietary fiber. However, limited knowledge is available about developmental aspects of barley leaves. In the present study, we investigated barley narrow leafed dwarf1 (nld1) mutants, which exhibit thin leaves accompanied by short stature. Detailed histological analysis revealed that leaf marginal tissues, such as sawtooth hairs and sclerenchymatous cells, were lacked in nld1, suggesting that narrowed leaf of nld1 was attributable to the defective development of the marginal regions in the leaves. The defective marginal developments were also appeared in internodes and glumes in spikelets. Map-based cloning revealed that NLD1 encodes a WUSCHEL-RELATED HOMEOBOX 3 (WOX3), an ortholog of the maize NARROW SHEATH genes. In situ hybridization showed that NLD1 transcripts were localized in the marginal edges of leaf primordia from the initiating stage. From these results, we concluded that NLD1 plays pivotal role in the increase of organ width and in the development of marginal tissues in lateral organs in barley.

14.
Plant J ; 78(6): 927-36, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24654985

RESUMO

Auxin is a fundamental plant hormone and its localization within organs plays pivotal roles in plant growth and development. Analysis of many Arabidopsis mutants that were defective in auxin biosynthesis revealed that the indole-3-pyruvic acid (IPA) pathway, catalyzed by the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) and YUCCA (YUC) families, is the major biosynthetic pathway of indole-3-acetic acid (IAA). In contrast, little information is known about the molecular mechanisms of auxin biosynthesis in rice. In this study, we identified a auxin-related rice mutant, fish bone (fib). FIB encodes an orthologue of TAA genes and loss of FIB function resulted in pleiotropic abnormal phenotypes, such as small leaves with large lamina joint angles, abnormal vascular development, small panicles, abnormal organ identity and defects in root development, together with a reduction in internal IAA levels. Moreover, we found that auxin sensitivity and polar transport activity were altered in the fib mutant. From these results, we suggest that FIB plays a pivotal role in IAA biosynthesis in rice and that auxin biosynthesis, transport and sensitivity are closely interrelated.


Assuntos
Ácidos Indolacéticos/metabolismo , Oryza/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Triptofano Transaminase/fisiologia , Sequência de Aminoácidos , Transporte Biológico/genética , Clonagem Molecular , Dados de Sequência Molecular , Oryza/enzimologia , Oryza/metabolismo , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Alinhamento de Sequência , Análise de Sequência de Proteína , Triptofano Transaminase/química , Triptofano Transaminase/genética
15.
Nucleic Acids Res ; 41(Database issue): D1214-21, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23180784

RESUMO

Similarity of gene expression across a wide range of biological conditions can be efficiently used in characterization of gene function. We have constructed a rice gene coexpression database, RiceFREND (http://ricefrend.dna.affrc.go.jp/), to identify gene modules with similar expression profiles and provide a platform for more accurate prediction of gene functions. Coexpression analysis of 27 201 genes was performed against 815 microarray data derived from expression profiling of various organs and tissues at different developmental stages, mature organs throughout the growth from transplanting until harvesting in the field and plant hormone treatment conditions, using a single microarray platform. The database is provided with two search options, namely, 'single guide gene search' and 'multiple guide gene search' to efficiently retrieve information on coexpressed genes. A user-friendly web interface facilitates visualization and interpretation of gene coexpression networks in HyperTree, Cytoscape Web and Graphviz formats. In addition, analysis tools for identification of enriched Gene Ontology terms and cis-elements provide clue for better prediction of biological functions associated with the coexpressed genes. These features allow users to clarify gene functions and gene regulatory networks that could lead to a more thorough understanding of many complex agronomic traits.


Assuntos
Bases de Dados Genéticas , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Genes de Plantas , Oryza/genética , Internet , Anotação de Sequência Molecular , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Software
16.
PLoS Genet ; 8(9): e1002953, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23028360

RESUMO

RNA silencing is a defense system against "genomic parasites" such as transposable elements (TE), which are potentially harmful to host genomes. In plants, transcripts from TEs induce production of double-stranded RNAs (dsRNAs) and are processed into small RNAs (small interfering RNAs, siRNAs) that suppress TEs by RNA-directed DNA methylation. Thus, the majority of TEs are epigenetically silenced. On the other hand, most of the eukaryotic genome is composed of TEs and their remnants, suggesting that TEs have evolved countermeasures against host-mediated silencing. Under some circumstances, TEs can become active and increase in copy number. Knowledge is accumulating on the mechanisms of TE silencing by the host; however, the mechanisms by which TEs counteract silencing are poorly understood. Here, we show that a class of TEs in rice produces a microRNA (miRNA) to suppress host silencing. Members of the microRNA820 (miR820) gene family are located within CACTA DNA transposons in rice and target a de novo DNA methyltransferase gene, OsDRM2, one of the components of epigenetic silencing. We confirmed that miR820 negatively regulates the expression of OsDRM2. In addition, we found that expression levels of various TEs are increased quite sensitively in response to decreased OsDRM2 expression and DNA methylation at TE loci. Furthermore, we found that the nucleotide sequence of miR820 and its recognition site within the target gene in some Oryza species have co-evolved to maintain their base-pairing ability. The co-evolution of these sequences provides evidence for the functionality of this regulation. Our results demonstrate how parasitic elements in the genome escape the host's defense machinery. Furthermore, our analysis of the regulation of OsDRM2 by miR820 sheds light on the action of transposon-derived small RNAs, not only as a defense mechanism for host genomes but also as a regulator of interactions between hosts and their parasitic elements.


Assuntos
Elementos de DNA Transponíveis/genética , Interações Hospedeiro-Parasita/genética , MicroRNAs , Oryza/genética , RNA Interferente Pequeno/genética , Metilação de DNA/genética , Repressão Epigenética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genoma de Planta , Sequências Repetitivas Dispersas/genética , MicroRNAs/genética , MicroRNAs/metabolismo
17.
Plant Cell Physiol ; 55(1): 42-51, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24192297

RESUMO

Maintenance of organ separation is one of the essential phenomena for normal plant development. We have identified and analyzed ONION3 (ONI3), which is required for avoiding organ fusions in rice. Loss-of-function mutations of ONI3, which were identified as mutants with ectopic expression of KNOX genes in leaves and morphologically resembling KNOX overexpressors, showed abnormal organ fusions in developing shoots. The mutant seedlings showed fusions between neighboring organs and also within an organ; they stopped growing soon after germination and subsequently died. ONI3 was shown to encode an enzyme that is most similar to Arabidopsis HOTHEAD and is involved in biosynthesis of long-chain fatty acids. Expression analyses showed that ONI3 was specifically expressed in the outermost cell layer in the shoot apex throughout life cycle, and the oni3 mutants had an aberrant outermost cell layer. Our results together with previous studies suggest that long-chain fatty acids are required for avoiding organ fusions and promoting normal shoot development in rice.


Assuntos
Mutação/genética , Organogênese , Oryza/crescimento & desenvolvimento , Oryza/genética , Proteínas de Plantas/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/genética , Clonagem Molecular , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Organogênese/genética , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/ultraestrutura , Proteínas de Plantas/metabolismo , Raízes de Plantas/anatomia & histologia , Análise de Sequência de Proteína , Ceras/metabolismo
18.
Plant Cell ; 23(6): 2143-54, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21705640

RESUMO

Because plant reproductive development occurs only in adult plants, the juvenile-to-adult phase change is an indispensable part of the plant life cycle. We identified two allelic mutants, peter pan syndrome-1 (pps-1) and pps-2, that prolong the juvenile phase in rice (Oryza sativa) and showed that rice PPS is an ortholog of Arabidopsis thaliana CONSTITUTIVE PHOTOMORPHOGENIC1. The pps-1 mutant exhibits delayed expression of miR156 and miR172 and the suppression of GA biosynthetic genes, reducing the GA(3) content in this mutant. In spite of its prolonged juvenile phase, the pps-1 mutant flowers early, and this is associated with derepression of RAP1B expression in pps-1 plants independently of the Hd1-Hd3a/RFT1 photoperiodic pathway. PPS is strongly expressed in the fourth and fifth leaves, suggesting that it regulates the onset of the adult phase downstream of MORI1 and upstream of miR156 and miR172. Its ability to regulate the vegetative phase change and the time of flowering suggests that rice PPS acquired novel functions during the evolution of rice/monocots.


Assuntos
Proteínas de Arabidopsis/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Reprodução Assexuada/fisiologia , Proteínas de Arabidopsis/genética , Relógios Circadianos/genética , Escuridão , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mutação , Oryza/anatomia & histologia , Oryza/genética , Fenótipo , Fotoperíodo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Ubiquitina-Proteína Ligases
19.
Plant J ; 72(6): 869-81, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22889403

RESUMO

Phyllotaxy is defined as the spatial arrangement of leaves on the stem. The mechanism responsible for this extremely regular pattern is one of the most fascinating enigmas in plant biology. In this study, we identified a gene regulating the phyllotactic pattern in rice. Loss-of-function mutants of the DECUSSATE (DEC) gene displayed a phyllotactic conversion from normal distichous pattern to decussate. The dec mutants had an enlarged shoot apical meristem with enhanced cell division activity. In contrast to the shoot apical meristem, the size of the root apical meristem in the dec mutants was reduced, and cell division activity was suppressed. These phenotypes indicate that DEC has opposite functions in the shoot apical meristem and root apical meristem. Map-based cloning revealed that DEC encodes a plant-specific protein containing a glutamine-rich region and a conserved motif. Although its molecular function is unclear, the conserved domain is shared with fungi and animals. Expression analysis showed that several type A response regulator genes that act in the cytokinin signaling pathway were down-regulated in the dec mutant. In addition, dec seedlings showed a reduced responsiveness to exogenous cytokinin. Our results suggest that DEC controls the phyllotactic pattern by affecting cytokinin signaling in rice.


Assuntos
Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Divisão Celular , Regulação para Baixo , Perfilação da Expressão Gênica , Glutamina , Meristema/anatomia & histologia , Meristema/genética , Meristema/fisiologia , Dados de Sequência Molecular , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/anatomia & histologia , Oryza/fisiologia , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Caules de Planta/anatomia & histologia , Caules de Planta/genética , Caules de Planta/fisiologia , Plantas Geneticamente Modificadas , Plântula/anatomia & histologia , Plântula/genética , Plântula/fisiologia , Alinhamento de Sequência
20.
Plant J ; 69(1): 168-80, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21910771

RESUMO

The temporal and spatial control of meristem identity is a key element in plant development. To better understand the molecular mechanisms that regulate inflorescence and flower architecture, we characterized the rice aberrant panicle organization 2 (apo2) mutant which exhibits small panicles with reduced number of primary branches due to the precocious formation of spikelet meristems. The apo2 mutants also display a shortened plastochron in the vegetative phase, late flowering, aberrant floral organ identities and loss of floral meristem determinacy. Map-based cloning revealed that APO2 is identical to previously reported RFL gene, the rice ortholog of the Arabidopsis LEAFY (LFY) gene. Further analysis indicated that APO2/RFL and APO1, the rice ortholog of Arabidopsis UNUSUAL FLORAL ORGANS, act cooperatively to control inflorescence and flower development. The present study revealed functional differences between APO2/RFL and LFY. In particular, APO2/RFL and LFY act oppositely on inflorescence development. Therefore, the genetic mechanisms for controlling inflorescence architecture have evolutionarily diverged between rice (monocots) and Arabidopsis (eudicots).


Assuntos
Proteínas de Arabidopsis/metabolismo , Meristema/crescimento & desenvolvimento , Meristema/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Clonagem Molecular , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Inflorescência , Mutação , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA