Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Comput Biol Med ; 176: 108545, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749325

RESUMO

Reliable classification of sleep stages is crucial in sleep medicine and neuroscience research for providing valuable insights, diagnoses, and understanding of brain states. The current gold standard method for sleep stage classification is polysomnography (PSG). Unfortunately, PSG is an expensive and cumbersome process involving numerous electrodes, often conducted in an unfamiliar clinic and annotated by a professional. Although commercial devices like smartwatches track sleep, their performance is well below PSG. To address these disadvantages, we present a feed-forward neural network that achieves gold-standard levels of agreement using only a single lead of electrocardiography (ECG) data. Specifically, the median five-stage Cohen's kappa is 0.725 on a large, diverse dataset of 5 to 90-year-old subjects. Comparisons with a comprehensive meta-analysis of between-human inter-rater agreement confirm the non-inferior performance of our model. Finally, we developed a novel loss function to align the training objective with Cohen's kappa. Our method offers an inexpensive, automated, and convenient alternative for sleep stage classification-further enhanced by a real-time scoring option. Cardiosomnography, or a sleep study conducted with ECG only, could take expert-level sleep studies outside the confines of clinics and laboratories and into realistic settings. This advancement democratizes access to high-quality sleep studies, considerably enhancing the field of sleep medicine and neuroscience. It makes less-expensive, higher-quality studies accessible to a broader community, enabling improved sleep research and more personalized, accessible sleep-related healthcare interventions.


Assuntos
Eletrocardiografia , Redes Neurais de Computação , Fases do Sono , Humanos , Eletrocardiografia/métodos , Fases do Sono/fisiologia , Adulto , Pessoa de Meia-Idade , Masculino , Idoso , Adolescente , Feminino , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Polissonografia/métodos , Processamento de Sinais Assistido por Computador
2.
Sci Adv ; 10(3): eadk1525, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38232159

RESUMO

Field programmable gate array (FPGA) is widely used in the acceleration of deep learning applications because of its reconfigurability, flexibility, and fast time-to-market. However, conventional FPGA suffers from the trade-off between chip area and reconfiguration latency, making efficient FPGA accelerations that require switching between multiple configurations still elusive. Here, we propose a ferroelectric field-effect transistor (FeFET)-based context-switching FPGA supporting dynamic reconfiguration to break this trade-off, enabling loading of arbitrary configuration without interrupting the active configuration execution. Leveraging the intrinsic structure and nonvolatility of FeFETs, compact FPGA primitives are proposed and experimentally verified. The evaluation results show our design shows a 63.0%/74.7% reduction in a look-up table (LUT)/connection block (CB) area and 82.7%/53.6% reduction in CB/switch box power consumption with a minimal penalty in the critical path delay (9.6%). Besides, our design yields significant time savings by 78.7 and 20.3% on average for context-switching and dynamic reconfiguration applications, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA