RESUMO
Polyhydroxyalkanoates (PHAs) are bioplastics that can serve as substitutes for petroleum-based plastics with the advantages of being biodegradable, biocompatible, and biobased. The microbial production of polyhydroxyalkanoates is generally conducted in the presence of sugar mixes rich in monosaccharides. In this study, molecular and cultural approaches based on forest soils enriched with hydrocarbon complexes led to the identification and isolation of microbial strains affiliated with Paraburkholderia sp. that dominated the microbial communities that are recognized among the top polyhydroxyalkanoates producers. The genome sequencing of those isolated affiliated strains showed that compared to the reference type strain of their species, they harbored more gene copies of the enzymes involved in PHB synthesis. The microbial conversion of sugar mixes for the newly isolated strains showed a higher PHB production (g/L) and content (%) than was exhibited by the reference strain type of that genus Paraburkholderia for PHB production (P. sacchari LMG 19450T).
Assuntos
Poli-Hidroxialcanoatos , Biopolímeros , Plásticos , AçúcaresRESUMO
The aim of the study was to get more insight into the role of LRP-1 in the mechanism of tumor progression in triple negative breast cancer. Atomic force microscopy, videomicroscopy, confocal microscopy and Rho-GTPAse activity assay were used on MDA-MB-231 and LRP-1-silenced cells. Silencing of LRP-1 in MDA-MB-231 cells was shown to led to a dramatic increase in the Young's modulus in parallel to a spectacular drop in membrane extension dynamics as well as a decrease in the cells migration abilities on both collagen I and fibronectin substrates. These results were perfectly correlated to a corresponding change in cell morphology and spreading capacity as well as in Rho-GTPases activity. By a multi-technique approach, it was demonstrated that LRP-1 played a crucial role in the migration of MDA-MB-231 cells by modulating the membrane extension dynamic. The originality of this AFM investigation lies in the non-invasive aspect of the measurements.
Assuntos
Neoplasias da Mama/patologia , Movimento Celular , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Microscopia de Força Atômica/métodos , Animais , Bovinos , Linhagem Celular Tumoral , Colágeno Tipo II/metabolismo , Módulo de Elasticidade , Feminino , Fibronectinas/metabolismo , Inativação Gênica , Humanos , Proteínas rho de Ligação ao GTP/metabolismoRESUMO
Lysosomes are membrane-bound endocytic organelles that play a major role in degrading cell macromolecules and recycling their building blocks. A comprehensive knowledge of the lysosome function requires an extensive description of its content, an issue partially addressed by previous proteomic analyses. However, the proteins underlying many lysosomal membrane functions, including numerous membrane transporters, remain unidentified. We performed a comparative, semi-quantitative proteomic analysis of rat liver lysosome-enriched and lysosome-nonenriched membranes and used spectral counts to evaluate the relative abundance of proteins. Among a total of 2,385 identified proteins, 734 proteins were significantly enriched in the lysosomal fraction, including 207 proteins already known or predicted as endo-lysosomal and 94 proteins without any known or predicted subcellular localization. The remaining 433 proteins had been previously assigned to other subcellular compartments but may in fact reside on lysosomes either predominantly or as a secondary location. Many membrane-associated complexes implicated in diverse processes such as degradation, membrane trafficking, lysosome biogenesis, lysosome acidification, signaling, and nutrient sensing were enriched in the lysosomal fraction. They were identified to an unprecedented extent as most, if not all, of their subunits were found and retained by our screen. Numerous transporters were also identified, including 46 novel potentially lysosomal proteins. We expressed 12 candidates in HeLa cells and observed that most of them colocalized with the lysosomal marker LAMP1, thus confirming their lysosomal residency. This list of candidate lysosomal proteins substantially increases our knowledge of the lysosomal membrane and provides a basis for further characterization of lysosomal functions.
Assuntos
Hepatócitos/metabolismo , Membranas Intracelulares/química , Fígado/metabolismo , Lisossomos/química , Proteínas de Membrana Transportadoras/isolamento & purificação , Proteoma/isolamento & purificação , Animais , Biomarcadores/metabolismo , Expressão Gênica , Células HeLa , Hepatócitos/química , Humanos , Fígado/química , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Microscopia de Fluorescência , Anotação de Sequência Molecular , Proteoma/genética , Proteoma/metabolismo , Ratos , Ratos WistarRESUMO
Mangrove sediments from New Caledonia were screened for xylanase sequences. One enzyme was selected and characterized both biochemically and for its industrial potential. Using a specific cDNA amplification method coupled with a MiSeq sequencing approach, the diversity of expressed genes encoding GH11 xylanases was investigated beneath Avicenia marina and Rhizophora stylosa trees during the wet and dry seasons and at two different sediment depths. GH11 xylanase diversity varied more according to tree species and season, than with respect to depth. One complete cDNA was selected (OFU29) and expressed in Pichia pastoris. The corresponding enzyme (called Xyn11-29) was biochemically characterized, revealing an optimal activity at 40-50 °C and at a pH of 5.5. Xyn11-29 was stable for 48 h at 35 °C, with a half-life of 1 h at 40 °C and in the pH range of 5.5-6. Xyn11-29 exhibited a high hydrolysis capacity on destarched wheat bran, with 40% and 16% of xylose and arabinose released after 24 h hydrolysis. Its activity on wheat straw was lower, with a release of 2.8% and 6.9% of xylose and arabinose, respectively. As the protein was isolated from mangrove sediments, the effect of sea salt on its activity was studied and discussed.
RESUMO
Affecting more than 30% of the Western population, nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and can lead to multiple complications, including nonalcoholic steatohepatitis (NASH), cancer, hypertension, and atherosclerosis. Insulin resistance and obesity are described as potential causes of NAFLD. However, we surmised that factors such as extracellular matrix remodeling of large blood vessels, skin, or lungs may also participate in the progression of liver diseases. We studied the effects of elastin-derived peptides (EDPs), biomarkers of aging, on NAFLD progression. We evaluated the consequences of EDP accumulation in mice and of elastin receptor complex (ERC) activation on lipid storage in hepatocytes, inflammation, and fibrosis development. The accumulation of EDPs induces hepatic lipogenesis (i.e., SREBP1c and ACC), inflammation (i.e., Kupffer cells, IL-1ß, and TGF-ß), and fibrosis (collagen and elastin expression). These effects are induced by inhibition of the LKB1-AMPK pathway by ERC activation. In addition, pharmacological inhibitors of EDPs demonstrate that this EDP-driven lipogenesis and fibrosis relies on engagement of the ERC. Our data reveal a major role of EDPs in the development of NASH, and they provide new clues for understanding the relationship between NAFLD and vascular aging.
Assuntos
Diabetes Mellitus Tipo 2/complicações , Elastina/metabolismo , Regulação da Expressão Gênica , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptores de Superfície Celular/agonistas , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Índice de Massa Corporal , Células Cultivadas , Estudos de Coortes , Dieta Hiperlipídica/efeitos adversos , Progressão da Doença , Elastina/sangue , Elastina/genética , Matriz Extracelular/imunologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Humanos , Lipogênese , Fígado/imunologia , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade Mórbida/complicações , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/genética , Estudo de Prova de Conceito , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transdução de SinaisRESUMO
BACKGROUND: Nucleolin is a major component of the nucleolus, but is also found in other cell compartments. This protein is involved in various aspects of ribosome biogenesis from transcription regulation to the assembly of pre-ribosomal particles; however, many reports suggest that it could also play an important role in non nucleolar functions. To explore nucleolin function in cell proliferation and cell cycle regulation we used siRNA to down regulate the expression of nucleolin. RESULTS: We found that, in addition to the expected effects on pre-ribosomal RNA accumulation and nucleolar structure, the absence of nucleolin results in a cell growth arrest, accumulation in G2, and an increase of apoptosis. Numerous nuclear alterations, including the presence of micronuclei, multiple nuclei or large nuclei are also observed. In addition, a large number of mitotic cells showed a defect in the control of centrosome duplication, as indicated by the presence of more than 2 centrosomes per cell associated with a multipolar spindle structure in the absence of nucleolin. This phenotype is very similar to that obtained with the inactivation of another nucleolar protein, B23. CONCLUSION: Our findings uncovered a new role for nucleolin in cell division, and highlight the importance of nucleolar proteins for centrosome duplication.
Assuntos
Ciclo Celular/fisiologia , Nucléolo Celular , Centrossomo/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Divisão Celular , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestrutura , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Proliferação de Células , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HeLa , Humanos , Fosfoproteínas/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Fuso Acromático , NucleolinaRESUMO
Adaptation to cold and warm conditions requires dramatic change in gene expression. The acclimatization process of the common carp Cyprinus carpio L. in its natural habitat has been used to study how organisms respond to natural environmental changes. At the cellular level, adaptation to cold condition is accompanied by a dramatic alteration in nucleolar structure and a down regulation of the expression of ribosomal genes. We show that the enrichment of condensed chromatin in winter adapted cells is not correlated with an increase of the heterochromatin marker trimethyl and monomethyl K20H4. However, the expression of the tri methyl K4 H3 and of the variant histone macroH2A is significantly increased during the winter season together with a hypermethylation of CpG residues. Taking into account the properties of macroH2A toward chromatin structure and dynamics and its role in gene repression our data suggest that the increased expression of macroH2A and the hypermethylation of DNA which occurs upon winter-acclimatization plays a major role for the reorganization of chromatin structure and the regulation of gene expression during the physiological adaptation to a colder environment.
Assuntos
Aclimatação , Carpas/fisiologia , Histonas/metabolismo , Estações do Ano , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Carpas/metabolismo , Núcleo Celular/química , Núcleo Celular/ultraestrutura , Metilação de DNA , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Heterocromatina/metabolismo , Histonas/análise , Histonas/genética , Fígado/citologia , RNA Mensageiro/análise , RNA Mensageiro/metabolismoRESUMO
S-palmitoylation is a reversible post-translational modification important for controlling the membrane targeting and function of numerous membrane proteins with diverse roles in signalling, scaffolding, and trafficking. We sought to identify novel palmitoylated proteins in B lymphocytes using acyl-biotin exchange chemistry, coupled with differential analysis by liquid-chromatography tandem mass spectrometry. In total, we identified 57 novel palmitoylated protein candidates from human EBV-transformed lymphoid cells. Two of them, namely CD20 and CD23 (low affinity immunoglobulin epsilon Fc receptor), are immune regulators that are effective/potential therapeutic targets for haematological malignancies, autoimmune diseases and allergic disorders. Palmitoylation of CD20 and CD23 was confirmed by heterologous expression of alanine mutants coupled with bioorthogonal metabolic labeling. This study demonstrates a new subset of palmitoylated proteins in B cells, illustrating the ubiquitous role of protein palmitoylation in immune regulation.