RESUMO
The solid tumour microenvironment includes nerve fibres that arise from the peripheral nervous system1,2. Recent work indicates that newly formed adrenergic nerve fibres promote tumour growth, but the origin of these nerves and the mechanism of their inception are unknown1,3. Here, by comparing the transcriptomes of cancer-associated trigeminal sensory neurons with those of endogenous neurons in mouse models of oral cancer, we identified an adrenergic differentiation signature. We show that loss of TP53 leads to adrenergic transdifferentiation of tumour-associated sensory nerves through loss of the microRNA miR-34a. Tumour growth was inhibited by sensory denervation or pharmacological blockade of adrenergic receptors, but not by chemical sympathectomy of pre-existing adrenergic nerves. A retrospective analysis of samples from oral cancer revealed that p53 status was associated with nerve density, which was in turn associated with poor clinical outcomes. This crosstalk between cancer cells and neurons represents mechanism by which tumour-associated neurons are reprogrammed towards an adrenergic phenotype that can stimulate tumour progression, and is a potential target for anticancer therapy.
Assuntos
Neurônios Adrenérgicos/patologia , Transdiferenciação Celular , Reprogramação Celular , Neoplasias Bucais/patologia , Células Receptoras Sensoriais/patologia , Proteína Supressora de Tumor p53/deficiência , Antagonistas Adrenérgicos/farmacologia , Antagonistas Adrenérgicos/uso terapêutico , Animais , Divisão Celular , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Fibras Nervosas/patologia , Neuritos/patologia , Receptores Adrenérgicos/metabolismo , Estudos Retrospectivos , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The causes and consequences of abnormal biogenesis of extracellular vesicles (EVs) are not yet well understood in malignancies, including in breast cancers (BCs). Given the hormonal signaling dependence of estrogen receptor-positive (ER+) BC, we hypothesized that 17ß-estradiol (estrogen) might influence EV production and microRNA (miRNA) loading. We report that physiological doses of 17ß-estradiol promote EV secretion specifically from ER+ BC cells via inhibition of miR-149-5p, hindering its regulatory activity on SP1, a transcription factor that regulates the EV biogenesis factor nSMase2. Additionally, miR-149-5p downregulation promotes hnRNPA1 expression, responsible for the loading of let-7's miRNAs into EVs. In multiple patient cohorts, we observed increased levels of let-7a-5p and let-7d-5p in EVs derived from the blood of premenopausal ER+ BC patients, and elevated EV levels in patients with high BMI, both conditions associated with higher levels of 17ß-estradiol. In brief, we identified a unique estrogen-driven mechanism by which ER+ BC cells eliminate tumor suppressor miRNAs in EVs, with effects on modulating tumor-associated macrophages in the microenvironment.
Assuntos
Neoplasias da Mama , Vesículas Extracelulares , MicroRNAs , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo , Estrogênios/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Microambiente TumoralRESUMO
Altered energy metabolism is a cancer hallmark as malignant cells tailor their metabolic pathways to meet their energy requirements. Glucose and glutamine are the major nutrients that fuel cellular metabolism, and the pathways utilizing these nutrients are often altered in cancer. Here, we show that the long ncRNA CCAT2, located at the 8q24 amplicon on cancer risk-associated rs6983267 SNP, regulates cancer metabolism in vitro and in vivo in an allele-specific manner by binding the Cleavage Factor I (CFIm) complex with distinct affinities for the two subunits (CFIm25 and CFIm68). The CCAT2 interaction with the CFIm complex fine-tunes the alternative splicing of Glutaminase (GLS) by selecting the poly(A) site in intron 14 of the precursor mRNA. These findings uncover a complex, allele-specific regulatory mechanism of cancer metabolism orchestrated by the two alleles of a long ncRNA.
Assuntos
Glutaminase/genética , Neoplasias/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Alelos , Processamento Alternativo , Metabolismo Energético , Células HCT116 , Humanos , Neoplasias/genética , Precursores de RNA/química , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismoRESUMO
The ischemic complications during the isolation of the substituting oesophageal graft placement and after its placement may lead to graft necrosis and to the need to find a different reconstructive procedure. The most frequent reports of graft necroses occur in the days following the reconstruction. We are presenting the case of a 27-y.o. with full dysphagia as a result of caustic stenosis, in whose case the oesophageal reconstruction was abandoned following the irreversible ischemia of the right colic graft during the vascular isolation, followed by right-side hemicolectomy and ileo-transverse anastomosis. 4 years post the ingestion of a caustic substance and 2 years post the right colic graft ischemic necrosis, we performed an oesophageal reconstruction using a pediculated, cervically revascularized, ileo-colic graft on the left colic vessels. The graft's particularity is that is formed from left and transverse colon and ileum portions, including the ileo-transverse anastomosis performed 2 years prior to the oesophageal reconstruction.
Assuntos
Cáusticos , Cólica , Esofagoplastia , Anastomose Cirúrgica/métodos , Cólica/cirurgia , Colo/transplante , Esofagoplastia/métodos , Humanos , Íleo/cirurgia , Necrose , Resultado do TratamentoRESUMO
Aptamers, synthetic single-strand oligonucleotides that are similar in function to antibodies, are promising as therapeutics because of their minimal side effects. However, the stability and bioavailability of the aptamers pose a challenge. We developed aptamers converted from RNA aptamer to modified DNA aptamers that target phospho-AXL with improved stability and bioavailability. On the basis of the comparative analysis of a library of 17 converted modified DNA aptamers, we selected aptamer candidates, GLB-G25 and GLB-A04, that exhibited the highest bioavailability, stability, and robust antitumor effect in in vitro experiments. Backbone modifications such as thiophosphate or dithiophosphate and a covalent modification of the 5'-end of the aptamer with polyethylene glycol optimized the pharmacokinetic properties, improved the stability of the aptamers in vivo by reducing nuclease hydrolysis and renal clearance, and achieved high and sustained inhibition of AXL at a very low dose. Treatment with these modified aptamers in ovarian cancer orthotopic mouse models significantly reduced tumor growth and the number of metastases. This effective silencing of the phospho-AXL target thus demonstrated that aptamer specificity and bioavailability can be improved by the chemical modification of existing aptamers for phospho-AXL. These results lay the foundation for the translation of these aptamer candidates and companion biomarkers to the clinic.
Assuntos
Anticorpos/imunologia , Aptâmeros de Nucleotídeos/imunologia , Neoplasias/imunologia , Anticorpos/química , Aptâmeros de Nucleotídeos/química , Humanos , Neoplasias/terapiaRESUMO
BACKGROUND & AIMS: Chromosomal instability (CIN) is a carcinogenesis event that promotes metastasis and resistance to therapy by unclear mechanisms. Expression of the colon cancer-associated transcript 2 gene (CCAT2), which encodes a long noncoding RNA (lncRNA), associates with CIN, but little is known about how CCAT2 lncRNA regulates this cancer enabling characteristic. METHODS: We performed cytogenetic analysis of colorectal cancer (CRC) cell lines (HCT116, KM12C/SM, and HT29) overexpressing CCAT2 and colon organoids from C57BL/6N mice with the CCAT2 transgene and without (controls). CRC cells were also analyzed by immunofluorescence microscopy, γ-H2AX, and senescence assays. CCAT2 transgene and control mice were given azoxymethane and dextran sulfate sodium to induce colon tumors. We performed gene expression array and mass spectrometry to detect downstream targets of CCAT2 lncRNA. We characterized interactions between CCAT2 with downstream proteins using MS2 pull-down, RNA immunoprecipitation, and selective 2'-hydroxyl acylation analyzed by primer extension analyses. Downstream proteins were overexpressed in CRC cells and analyzed for CIN. Gene expression levels were measured in CRC and non-tumor tissues from 5 cohorts, comprising more than 900 patients. RESULTS: High expression of CCAT2 induced CIN in CRC cell lines and increased resistance to 5-fluorouracil and oxaliplatin. Mice that expressed the CCAT2 transgene developed chromosome abnormalities, and colon organoids derived from crypt cells of these mice had a higher percentage of chromosome abnormalities compared with organoids from control mice. The transgenic mice given azoxymethane and dextran sulfate sodium developed more and larger colon polyps than control mice given these agents. Microarray analysis and mass spectrometry indicated that expression of CCAT2 increased expression of genes involved in ribosome biogenesis and protein synthesis. CCAT2 lncRNA interacted directly with and stabilized BOP1 ribosomal biogenesis factor (BOP1). CCAT2 also increased expression of MYC, which activated expression of BOP1. Overexpression of BOP1 in CRC cell lines resulted in chromosomal missegregation errors, and increased colony formation, and invasiveness, whereas BOP1 knockdown reduced viability. BOP1 promoted CIN by increasing the active form of aurora kinase B, which regulates chromosomal segregation. BOP1 was overexpressed in polyp tissues from CCAT2 transgenic mice compared with healthy tissue. CCAT2 lncRNA and BOP1 mRNA or protein were all increased in microsatellite stable tumors (characterized by CIN), but not in tumors with microsatellite instability compared with nontumor tissues. Increased levels of CCAT2 lncRNA and BOP1 mRNA correlated with each other and with shorter survival times of patients. CONCLUSIONS: We found that overexpression of CCAT2 in colon cells promotes CIN and carcinogenesis by stabilizing and inducing expression of BOP1 an activator of aurora kinase B. Strategies to target this pathway might be developed for treatment of patients with microsatellite stable colorectal tumors.
Assuntos
Instabilidade Cromossômica , Neoplasias Colorretais/genética , Neoplasias Experimentais/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Aurora Quinase B/metabolismo , Azoximetano/toxicidade , Carcinogênese/genética , Linhagem Celular Tumoral , Colo/citologia , Colo/patologia , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/patologia , Análise Citogenética , Dextranos/toxicidade , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/patologia , Organoides , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/genéticaRESUMO
The cancer-risk-associated rs6983267 single nucleotide polymorphism (SNP) and the accompanying long noncoding RNA CCAT2 in the highly amplified 8q24.21 region have been implicated in cancer predisposition, although causality has not been established. Here, using allele-specific CCAT2 transgenic mice, we demonstrate that CCAT2 overexpression leads to spontaneous myeloid malignancies. We further identified that CCAT2 is overexpressed in bone marrow and peripheral blood of myelodysplastic/myeloproliferative neoplasms (MDS/MPN) patients. CCAT2 induces global deregulation of gene expression by down-regulating EZH2 in vitro and in vivo in an allele-specific manner. We also identified a novel non-APOBEC, non-ADAR, RNA editing at the SNP locus in MDS/MPN patients and CCAT2-transgenic mice. The RNA transcribed from the SNP locus in malignant hematopoietic cells have different allelic composition from the corresponding genomic DNA, a phenomenon rarely observed in normal cells. Our findings provide fundamental insights into the functional role of rs6983267 SNP and CCAT2 in myeloid malignancies.
Assuntos
Proliferação de Células/genética , Doenças Mieloproliferativas-Mielodisplásicas/genética , RNA Longo não Codificante/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Doenças Mieloproliferativas-Mielodisplásicas/patologia , Polimorfismo de Nucleotídeo Único/genética , Edição de RNA/genéticaRESUMO
Using a systems biology approach to prioritize potential points of intervention in ovarian cancer, we identified the lysine rich coiled-coil 1 (KRCC1), as a potential target. High-grade serous ovarian cancer patient tumors and cells express significantly higher levels of KRCC1 which correlates with poor overall survival and chemoresistance. We demonstrate that KRCC1 is predominantly present in the chromatin-bound nuclear fraction, interacts with HDAC1, HDAC2, and with the serine-threonine phosphatase PP1CC. Silencing KRCC1 inhibits cellular plasticity, invasive properties, and potentiates apoptosis resulting in reduced tumor growth. These phenotypes are associated with increased acetylation of histones and with increased phosphorylation of H2AX and CHK1, suggesting the modulation of transcription and DNA damage that may be mediated by the action of HDAC and PP1CC, respectively. Hence, we address an urgent need to develop new targets in cancer.
Assuntos
Dano ao DNA , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Neoplasias , Neoplasias Ovarianas , Transcrição Gênica , Linhagem Celular Tumoral , Feminino , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , Fosforilação , Fatores de RiscoRESUMO
BACKGROUND: Our pilot clinical study of EphA2 inhibitor (dasatinib) plus paclitaxel and carboplatin showed interesting clinical activity in endometrial cancer with manageable toxicity. However, the underlying mechanisms of dasatinib resistance in uterine cancer are unknown. Here, we investigated potential mechanisms underlying resistance to EphA2 inhibitors in uterine cancer and examined the anti-tumor activity of EphA2 inhibitors alone and in combination with a MEK inhibitor. METHODS: We evaluated the antitumor activity of EphA2 inhibitors plus a MEK inhibitor using in vitro and in vivo orthotopic models of uterine cancer. RESULTS: EphA2 inhibitor induced MAPK in dasatinib-resistant uterine cancer cells (HEC-1A and Ishikawa) and BRAF/CRAF heterodimerization in HEC-1A cells. EphA2 inhibitor and trametinib significantly increased apoptosis in cancer cells resistant to EphA2 inhibitors compared with controls (p < 0.01). An in vivo study with the orthotopic HEC-1A model showed significantly greater antitumor response to combination treatment compared with dasatinib alone (p < 0.01). Combination treatment increased EphrinA1 and BIM along with decreased pMAPK, Jagged 1, and c-MYC expression in dasatinib-resistant cells. In addition, Spearman analysis using the TCGA data revealed that upregulation of EphA2 was significantly correlated with JAG1, MYC, NOTCH1, NOTCH3 and HES1 expression (p < 0.001, r = 0.25-0.43). Specifically, MAP3K15 and the NOTCH family genes were significantly related to poor clinical outcome in patients with uterine cancer. CONCLUSIONS: These findings indicate that the MAPK pathway is activated in dasatinib-resistant uterine cancer cells and that EphrinA1-mediated MEK inhibition overcomes dasatinib resistance. Dual targeting of both EphA2 and MEK, combined with chemotherapy, should be considered for future clinical development.
Assuntos
Dasatinibe/uso terapêutico , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Receptor EphA2/antagonistas & inibidores , Neoplasias Uterinas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Dasatinibe/administração & dosagem , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Piridonas/administração & dosagem , Piridonas/uso terapêutico , Pirimidinonas/administração & dosagem , Pirimidinonas/uso terapêutico , Receptor EphA2/fisiologiaRESUMO
The human genome contains 481 ultraconserved regions (UCRs), which are genomic stretches of over 200 base pairs conserved among human, rat, and mouse. The majority of these regions are transcriptionally active (T-UCRs), and several have been found to be differentially expressed in tumours. Some T-UCRs have been functionally characterized, but of those few have been associated to breast cancer (BC). Using TCGA data, we found 302 T-UCRs related to clinical features in BC: 43% were associated with molecular subtypes, 36% with oestrogen-receptor positivity, 17% with HER2 expression, 12% with stage, and 10% with overall survival. The expression levels of 12 T-UCRs were further analysed in a cohort of 82 Brazilian BC patients using RT-qPCR. We found that uc.147 is high expressed in luminal A and B patients. For luminal A, a subtype usually associated with better prognosis, high uc.147 expression was associated with a poor prognosis and suggested as an independent prognostic factor. The lncRNA from uc.147 (lnc-uc.147) is located in the nucleus. Northern blotting results show that uc.147 is a 2,8 kb monoexonic trancript, and its sequence was confirmed by RACE. The silencing of uc.147 increases apoptosis, arrests cell cycle, and reduces cell viability and colony formation in BC cell lines. Additionally, we identifed 19 proteins that interact with lnc-uc.147 through mass spectrometry and demonstrated a high correlation of lnc-uc.147 with the neighbour gene expression and miR-18 and miR-190b. This is the first study to analyse the expression of all T-UCRs in BC and to functionally assess the lnc-uc.147.
Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , RNA Longo não Codificante/genética , Apoptose , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Movimento Celular , Proliferação de Células , Feminino , Humanos , Prognóstico , Taxa de Sobrevida , Células Tumorais CultivadasRESUMO
TP53, a well-known tumour suppressor gene that encodes p53, is frequently inactivated by mutation or deletion in most human tumours. A tremendous effort has been made to restore p53 activity in cancer therapies. However, no effective p53-based therapy has been successfully translated into clinical cancer treatment owing to the complexity of p53 signalling. Here we demonstrate that genomic deletion of TP53 frequently encompasses essential neighbouring genes, rendering cancer cells with hemizygous TP53 deletion vulnerable to further suppression of such genes. POLR2A is identified as such a gene that is almost always co-deleted with TP53 in human cancers. It encodes the largest and catalytic subunit of the RNA polymerase II complex, which is specifically inhibited by α-amanitin. Our analysis of The Cancer Genome Atlas (TCGA) and Cancer Cell Line Encyclopedia (CCLE) databases reveals that POLR2A expression levels are tightly correlated with its gene copy numbers in human colorectal cancer. Suppression of POLR2A with α-amanitin or small interfering RNAs selectively inhibits the proliferation, survival and tumorigenic potential of colorectal cancer cells with hemizygous TP53 loss in a p53-independent manner. Previous clinical applications of α-amanitin have been limited owing to its liver toxicity. However, we found that α-amanitin-based antibody-drug conjugates are highly effective therapeutic agents with reduced toxicity. Here we show that low doses of α-amanitin-conjugated anti-epithelial cell adhesion molecule (EpCAM) antibody lead to complete tumour regression in mouse models of human colorectal cancer with hemizygous deletion of POLR2A. We anticipate that inhibiting POLR2A will be a new therapeutic approach for human cancers containing such common genomic alterations.
Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Genes p53/genética , Proteína Supressora de Tumor p53/deficiência , Alfa-Amanitina/efeitos adversos , Alfa-Amanitina/química , Alfa-Amanitina/farmacologia , Alfa-Amanitina/uso terapêutico , Animais , Anticorpos/química , Anticorpos/imunologia , Antígenos de Neoplasias/imunologia , Domínio Catalítico , Moléculas de Adesão Celular/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/patologia , Bases de Dados Genéticas , Modelos Animais de Doenças , Molécula de Adesão da Célula Epitelial , Feminino , Deleção de Genes , Dosagem de Genes/genética , Humanos , Imunoconjugados/efeitos adversos , Imunoconjugados/química , Imunoconjugados/imunologia , Imunoconjugados/uso terapêutico , Camundongos , Subunidades Proteicas/química , Subunidades Proteicas/deficiência , Subunidades Proteicas/genética , RNA Polimerase II/antagonistas & inibidores , RNA Polimerase II/química , RNA Polimerase II/deficiência , RNA Polimerase II/genética , Proteína Supressora de Tumor p53/biossíntese , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Importance: Accurate estimation of the association between transient ischemic attack (TIA) and risk of subsequent stroke can help to improve preventive efforts and limit the burden of stroke in the population. Objective: To determine population-based incidence of TIA and the timing and long-term trends of stroke risk after TIA. Design, Setting, and Participants: Retrospective cohort study (Framingham Heart Study) of prospectively collected data of 14â¯059 participants with no history of TIA or stroke at baseline, followed up from 1948-December 31, 2017. A sample of TIA-free participants was matched to participants with first incident TIA on age and sex (ratio, 5:1). Exposures: Calendar time (TIA incidence calculation, time-trends analyses), TIA (matched longitudinal cohort). Main Outcomes and Measures: The main outcomes were TIA incidence rates; proportion of stroke occurring after TIA in the short term (7, 30, and 90 days) vs the long term (>1-10 years); stroke after TIA vs stroke among matched control participants without TIA; and time trends of stroke risk at 90 days after TIA assessed in 3 epochs: 1954-1985, 1986-1999, and 2000-2017. Results: Among 14â¯059 participants during 66 years of follow-up (366â¯209 person-years), 435 experienced TIA (229 women; mean age, 73.47 [SD, 11.48] years and 206 men; mean age, 70.10 [SD, 10.64] years) and were matched to 2175 control participants without TIA. The estimated incidence rate of TIA was 1.19/1000 person-years. Over a median of 8.86 years of follow-up after TIA, 130 participants (29.5%) had a stroke; 28 strokes (21.5%) occurred within 7 days, 40 (30.8%) occurred within 30 days, 51 (39.2%) occurred within 90 days, and 63 (48.5%) occurred more than 1 year after the index TIA; median time to stroke was 1.64 (interquartile range, 0.07-6.6) years. The age- and sex-adjusted cumulative 10-year hazard of incident stroke for patients with TIA (130 strokes among 435 cases) was 0.46 (95% CI, 0.39-0.55) and for matched control participants without TIA (165 strokes among 2175) was 0.09 (95% CI, 0.08-0.11); fully adjusted hazard ratio [HR], 4.37 (95% CI, 3.30-5.71; P < .001). Compared with the 90-day stroke risk after TIA in 1948-1985 (16.7%; 26 strokes among 155 patients with TIA), the risk between 1986-1999 was 11.1% (18 strokes among 162 patients) and between 2000-2017 was 5.9% (7 strokes among 118 patients). Compared with the first epoch, the HR for 90-day risk of stroke in the second epoch was 0.60 (95% CI, 0.33-1.12) and in the third epoch was 0.32 (95% CI, 0.14-0.75) (P = .005 for trend). Conclusions and Relevance: In this population-based cohort study from 1948-2017, the estimated crude TIA incidence was 1.19/1000 person-years, the risk of stroke was significantly greater after TIA compared with matched control participants who did not have TIA, and the risk of stroke after TIA was significantly lower in the most recent epoch from 2000-2017 compared with an earlier period from 1948-1985.
Assuntos
Ataque Isquêmico Transitório/complicações , Acidente Vascular Cerebral/etiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Incidência , Ataque Isquêmico Transitório/epidemiologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Acidente Vascular Cerebral/epidemiologiaRESUMO
Many long noncoding RNAs have been implicated in tumorigenesis and chemoresistance; however, the underlying mechanisms are not well understood. We investigated the role of PRKAR1B-AS2 long noncoding RNA in ovarian cancer (OC) and chemoresistance and identified potential downstream molecular circuitry underlying its action. Analysis of The Cancer Genome Atlas OC dataset, in vitro experiments, proteomic analysis, and a xenograft OC mouse model were implemented. Our findings indicated that overexpression of PRKAR1B-AS2 is negatively correlated with overall survival in OC patients. Furthermore, PRKAR1B-AS2 knockdown-attenuated proliferation, migration, and invasion of OC cells and ameliorated cisplatin and alpelisib resistance in vitro. In proteomic analysis, silencing PRKAR1B-AS2 markedly inhibited protein expression of PI3K-110α and abrogated the phosphorylation of PDK1, AKT, and mTOR, with no significant effect on PTEN. The RNA immunoprecipitation detected a physical interaction between PRKAR1B-AS2 and PI3K-110α. Moreover, PRKAR1B-AS2 knockdown by systemic administration of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine nanoparticles loaded with PRKAR1B-AS2-specific small interfering RNA enhanced cisplatin sensitivity in a xenograft OC mouse model. In conclusion, PRKAR1B-AS2 promotes tumor growth and confers chemoresistance by modulating the PI3K/AKT/mTOR pathway. Thus, targeting PRKAR1B-AS2 may represent a novel therapeutic approach for the treatment of OC patients.
Assuntos
Carcinogênese/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , RNA Longo não Codificante/genética , RNA Neoplásico/genética , Serina-Treonina Quinases TOR/genéticaRESUMO
OBJECTIVE: To investigate the function of a novel primate-specific long non-coding RNA (lncRNA), named FLANC, based on its genomic location (co-localised with a pyknon motif), and to characterise its potential as a biomarker and therapeutic target. DESIGN: FLANC expression was analysed in 349 tumours from four cohorts and correlated to clinical data. In a series of multiple in vitro and in vivo models and molecular analyses, we characterised the fundamental biological roles of this lncRNA. We further explored the therapeutic potential of targeting FLANC in a mouse model of colorectal cancer (CRC) metastases. RESULTS: FLANC, a primate-specific lncRNA feebly expressed in normal colon cells, was significantly upregulated in cancer cells compared with normal colon samples in two independent cohorts. High levels of FLANC were associated with poor survival in two additional independent CRC patient cohorts. Both in vitro and in vivo experiments demonstrated that the modulation of FLANC expression influenced cellular growth, apoptosis, migration, angiogenesis and metastases formation ability of CRC cells. In vivo pharmacological targeting of FLANC by administration of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine nanoparticles loaded with a specific small interfering RNA, induced significant decrease in metastases, without evident tissue toxicity or pro-inflammatory effects. Mechanistically, FLANC upregulated and prolonged the half-life of phosphorylated STAT3, inducing the overexpression of VEGFA, a key regulator of angiogenesis. CONCLUSIONS: Based on our findings, we discovered, FLANC as a novel primate-specific lncRNA that is highly upregulated in CRC cells and regulates metastases formation. Targeting primate-specific transcripts such as FLANC may represent a novel and low toxic therapeutic strategy for the treatment of patients.
Assuntos
Carcinogênese , Proliferação de Células , Neoplasias Colorretais , Neovascularização Patológica , RNA Longo não Codificante , Fator de Transcrição STAT3/metabolismo , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Descoberta de Drogas , Regulação Neoplásica da Expressão Gênica , Marcadores Genéticos , Terapia Genética , Humanos , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Testes Farmacogenômicos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Cells adjust to hypoxic stress within the tumor microenvironment by downregulating energy-consuming processes including translation. To delineate mechanisms of cellular adaptation to hypoxia, we performed RNA-Seq of normoxic and hypoxic head and neck cancer cells. These data revealed a significant down regulation of genes known to regulate RNA processing and splicing. Exon-level analyses classified > 1,000 mRNAs as alternatively spliced under hypoxia and uncovered a unique retained intron (RI) in the master regulator of translation initiation, EIF2B5. Notably, this intron was expressed in solid tumors in a stage-dependent manner. We investigated the biological consequence of this RI and demonstrate that its inclusion creates a premature termination codon (PTC), that leads to a 65kDa truncated protein isoform that opposes full-length eIF2Bε to inhibit global translation. Furthermore, expression of 65kDa eIF2Bε led to increased survival of head and neck cancer cells under hypoxia, providing evidence that this isoform enables cells to adapt to conditions of low oxygen. Additional work to uncover -cis and -trans regulators of EIF2B5 splicing identified several factors that influence intron retention in EIF2B5: a weak splicing potential at the RI, hypoxia-induced expression and binding of the splicing factor SRSF3, and increased binding of total and phospho-Ser2 RNA polymerase II specifically at the intron retained under hypoxia. Altogether, these data reveal differential splicing as a previously uncharacterized mode of translational control under hypoxia and are supported by a model in which hypoxia-induced changes to cotranscriptional processing lead to selective retention of a PTC-containing intron in EIF2B5.
Assuntos
Fator de Iniciação 2B em Eucariotos/genética , Perfilação da Expressão Gênica/métodos , Íntrons/genética , Biossíntese de Proteínas/genética , Hipóxia Tumoral/genética , Processamento Alternativo/genética , Sequência de Bases , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Loci Gênicos , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Modelos Biológicos , Motivos de Nucleotídeos/genética , Fosforilação , Reação em Cadeia da Polimerase , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Reprodutibilidade dos TestesRESUMO
Cyclin-dependent kinase (CDK)-7 inhibitors are emerging as promising drugs for the treatment of different types of cancer that show chemotherapy resistance. Evaluation of the effects of CDK7 inhibitor, THZ1, alone and combined with tamoxifen is of paramount importance. Thus, in the current work, we assessed the effects of THZ1 and/or tamoxifen in two estrogen receptor-positive (ER+) breast cancer cell lines (MCF7) and its tamoxifen resistant counterpart (LCC2) in vitro and in xenograft mouse models of breast cancer. Furthermore, we evaluated the expression of CDK7 in clinical samples from breast cancer patients. Cell viability, apoptosis, and genes involved in cell cycle regulation and tamoxifen resistance were determined. Tumor volume and weight, proliferation marker (Ki67), angiogenic marker (CD31), and apoptotic markers were assayed. Bioinformatic data indicated CDK7 expression was associated with negative prognosis, enhanced pro-oncogenic pathways, and decreased response to tamoxifen. Treatment with THZ1 enhanced tamoxifen-induced cytotoxicity, while it inhibited genes involved in tumor progression in MCF-7 and LCC2 cells. In vivo, THZ1 boosted the effect of tamoxifen on tumor weight and tumor volume, reduced Ki67 and CD31 expression, and increased apoptotic cell death. Our findings identify CDK7 as a possible therapeutic target for breast cancer whether it is sensitive or resistant to tamoxifen therapy.
Assuntos
Neoplasias da Mama/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Quinase Ativadora de Quinase Dependente de CiclinaRESUMO
Splenectomy is a common surgical procedure performed in millions of people worldwide. Epidemiologic data show that splenectomy is followed by infectious (sepsis) and non-infectious complications, with unknown mechanisms. In order to explore the role of the non-coding transcripts involved in these complications, we analysed a panel of circulating microRNAs (miRNAs), which were previously reported to be deregulated in sepsis, in the plasma of splenectomized patients. MiR-223 was overexpressed immediately and late after splenectomy, while miR-146a was overexpressed immediately after splenectomy, returning latter to basal levels; and miR-16, miR-93, miR-26a and miR-26b were overexpressed only late after splenectomy, suggesting similarities with sepsis. We also explored the non-coding (nc)RNome of circulating peripheral blood leucocytes by performing a ncRNA full genome profiling. We observed a reorganization of the ncRNoma after splenectomy, characterized by up-regulation of miRNAs and down-regulation of transcribed pyknons (T-PYKs). Pathway analysis revealed that deregulated miRNAs control pathways involved in immunity, cancer and endothelial growth. We checked the expression of the ncRNAs in 15 immune cell types from healthy donors and observed that plasma miRNAs, cellular miRNAs and T-PYKs have a cell-specific expression pattern and are abundant in different types of immune cells. These findings suggest that the ncRNAs potentially regulate the immune changes observed after splenectomy.
Assuntos
RNA não Traduzido/genética , Esplenectomia , Estudos de Coortes , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Leucócitos/metabolismo , MicroRNAs/sangue , MicroRNAs/genética , RNA não Traduzido/metabolismo , Reprodutibilidade dos Testes , Transcrição Gênica , Transcriptoma/genética , Regulação para Cima/genéticaRESUMO
BACKGROUND: Non-coding RNAs and especially microRNAs have been discovered to act as master regulators of cancer initiation and progression. The aim of our study was to discover and characterize the function of yet functionally uncharacterized microRNAs in human breast carcinogenesis. METHODS: In an unbiased approach, we utilized an established model system for breast cancer (BC) stem cell formation ("mammosphere assay") to identify whole miRNome alterations in breast carcinogenesis. Clinical samples of BC patients were used to evaluate the human relevance of the newly identified miRNA candidates. One promising candidate, miR-1287-5p, was further explored on its impact on several hallmarks of cancer. The molecular mode of action was characterized by whole transcriptome analysis, in silico prediction tools, miRNA-interaction assays, pheno-copy assays, and drug sensitivity assays. RESULTS: Among several other microRNAs, miR-1287-5p was significantly downregulated in mammospheres and human BC tissue compared to normal breast tissue (p < 0.0001). Low expression levels were significantly associated with poor prognosis in BC patients. MiR-1287-5p significantly decreased cellular growth, cells in S phase of cell cycle, anchorage-independent growth, and tumor formation in vivo. In addition, we identified PIK3CB as a direct molecular interactor of miR-1287-5p and a novel prognostic factor in BC. Finally, PI3Kinase pathway chemical inhibitors combined with miR-1287-5p mimic increased the pharmacological growth inhibitory potential in triple negative BC cells. CONCLUSION: Our data identified for the first time the involvement of miR-1287-5p in human BC and suggest a potential for therapeutic interventions in difficult to treat triple negative BC.
Assuntos
Carcinogênese/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Animais , Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Análise de Sobrevida , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Metastatic colorectal cancer (mCRC) is a highly heterogeneous disease from a clinical, molecular, and immunological perspective. Current predictive models rely primarily in tissue based genetic analysis, which not always correlate with inflammatory response. Here we evaluated the role of a circulating inflammatory signature as a prognostic marker in mCRC. METHODS: Two hundred eleven newly diagnosed patients with mCRC were enrolled in the study. One hundred twenty-one patients had unresectable metastases, whereas ninety patients had potentially resectable liver metastases at presentation. Analysis of miR-21, IL-6, and IL-8 in the plasma of peripheral blood was performed at baseline. Patients with high circulating levels of ≥2 of the three inflammation markers (miR-21, IL-6, and IL-8) were considered to have the "Inflammation phenotype-positive CISIG". RESULTS: Positive CISIG was found in 39/90 (43%) and 50/121 (45%) patients in the resectable and unresectable cohort, respectively. In the resectable population the median relapse-free survival was 18.4 compared to 31.4 months (p = 0.001 HR 2.09, 95% CI 1.2-3.67) for positive vs. negative CISIG. In contrast, the individual components were not significant. In the same population the median overall survival was 46.2 compared to 66.0 months (p = 0.0003, HR 2.57, 95% CI 1.26-5.27) for positive vs. negative CISIG, but not significant for the individual components. In the unresectable population, the median overall survival was 13.5 compared to 25.0 months (p = 0.0008, HR 2.49, 95% CI 1.46-4.22) for positive vs. negative CISIG. IL-6 was independently prognostic with overall survival of 16.2 compared to 27.0 months (p = 0.004, HR 1.96, 95% CI 1.24-3.11) for high vs. low IL-6, but not the other components. Using a Cox regression model, we demonstrated that CISIG is an independent predictive marker of survival in patients with unresectable disease (HR 1.8, 95% CI 1.2, 2.8, p < 0.01). CONCLUSION: In two different cohorts, we demonstrated that CISIG is a strong prognostic factor of relapse-free and overall survival of patients with mCRC. Based on these data, analysis of circulating inflammatory signaling can be complimentary to traditional molecular testing.