Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(7): e1010698, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35830486

RESUMO

Baloxavir marboxil (BXM) is approved for treating uncomplicated influenza. The active metabolite baloxavir acid (BXA) inhibits cap-dependent endonuclease activity of the influenza virus polymerase acidic protein (PA), which is necessary for viral transcription. Treatment-emergent E23G or E23K (E23G/K) PA substitutions have been implicated in reduced BXA susceptibility, but their effect on virus fitness and transmissibility, their synergism with other BXA resistance markers, and the mechanisms of resistance have been insufficiently studied. Accordingly, we generated point mutants of circulating seasonal influenza A(H1N1)pdm09 and A(H3N2) viruses carrying E23G/K substitutions. Both substitutions caused 2- to 13-fold increases in the BXA EC50. EC50s were higher with E23K than with E23G and increased dramatically (138- to 446-fold) when these substitutions were combined with PA I38T, the dominant BXA resistance marker. E23G/K-substituted viruses exhibited slightly impaired replication in MDCK and Calu-3 cells, which was more pronounced with E23K. In ferret transmission experiments, all viruses transmitted to direct-contact and airborne-transmission animals, with only E23K+I38T viruses failing to infect 100% of animals by airborne transmission. E23G/K genotypes were predominantly stable during transmission events and through five passages in vitro. Thermostable PA-BXA interactions were weakened by E23G/K substitutions and further weakened when combined with I38T. In silico modeling indicated this was caused by E23G/K altering the placement of functionally important Tyr24 in the endonuclease domain, potentially decreasing BXA binding but at some cost to the virus. These data implicate E23G/K, alone or combined with I38T, as important markers of reduced BXM susceptibility, and such mutants could emerge and/or transmit among humans.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Tiepinas , Substituição de Aminoácidos , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Dibenzotiepinas , Farmacorresistência Viral/genética , Endonucleases/metabolismo , Furões , Humanos , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/metabolismo , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Morfolinas , Oxazinas/farmacologia , Piridinas/farmacologia , Piridonas/farmacologia , Tiepinas/farmacologia , Triazinas , Proteínas Virais/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-33593838

RESUMO

Bacterial type II topoisomerases, DNA gyrase and topoisomerase IV, are targets of many antibiotics including fluoroquinolones (FQs). Unfortunately, a number of bacterial species easily acquire resistance to FQs by mutations in either DNA gyrase or topoisomerase IV genes. The emergence of resistant pathogenic strains is a global problem in healthcare, therefore, identifying alternative pathways to thwart their persistence is the current frontier in drug discovery. An attractive class of compounds is nybomycins, reported to be "reverse antibiotics" that selectively inhibit growth of some Gram-positive FQ-resistant bacteria by targeting the mutant form of DNA gyrase, while being inactive against wild-type strains with FQ-sensitive gyrases. The strong "reverse" effect was demonstrated only for a few Gram-positive organisms resistant to FQs due to the S83L/I mutation in GyrA subunit of DNA gyrase. However, the activity of nybomycins has not been extensively explored among Gram-negative species. Here, we observed that in Gram-negative E. coli ΔtolC strain with enhanced permeability, wild-type gyrase and GyrA S83L mutant, resistant to fluoroquinolones, are both similarly sensitive to nybomycin.

3.
J Chem Inf Model ; 63(4): 1124-1132, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36744300

RESUMO

Identifying ligand-binding sites on the protein surface is a crucial step in the structure-based drug design. Although multiple techniques have been proposed, including those using machine learning algorithms, the existing solutions do not provide significant advantages over nonmachine learning approaches and there is still a big room for improvement. The low ability to identify protein-ligand-binding sites makes available approaches inapplicable to automated drug design. Here, we present SiteRadar, a new algorithm for mapping cavities that are likely to bind a small-molecule ligand. SiteRadar shows higher accuracy in binding site identification compared with FPocket and PUResNet. SiteRadar demonstrates an ability to detect up to 74% of true ligand-binding sites according to the top N + 2 metric and usually covers approximately 80% of ligand atoms. Therefore, SiteRadar can be regarded as a promising solution for implementation into algorithms for automated drug design.


Assuntos
Algoritmos , Proteínas , Ligantes , Proteínas/química , Sítios de Ligação , Ligação Proteica , Aprendizado de Máquina
4.
J Chem Inf Model ; 63(3): 695-701, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36728505

RESUMO

Chemistry42 is a software platform for de novo small molecule design and optimization that integrates Artificial Intelligence (AI) techniques with computational and medicinal chemistry methodologies. Chemistry42 efficiently generates novel molecular structures with optimized properties validated in both in vitro and in vivo studies and is available through licensing or collaboration. Chemistry42 is the core component of Insilico Medicine's Pharma.ai drug discovery suite. Pharma.ai also includes PandaOmics for target discovery and multiomics data analysis, and inClinico─a data-driven multimodal forecast of a clinical trial's probability of success (PoS). In this paper, we demonstrate how the platform can be used to efficiently find novel molecular structures against DDR1 and CDK20.


Assuntos
Inteligência Artificial , Descoberta de Drogas , Descoberta de Drogas/métodos , Software , Desenho de Fármacos
5.
Molecules ; 28(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36770991

RESUMO

Novel variously substituted thiohydantoin-based dispiro-indolinones were prepared using a regio- and diastereoselective synthetic route from 5-arylidene-2-thiohydantoins, isatines, and sarcosine. The obtained molecules were subsequently evaluated in vitro against the cancer cell lines LNCaP, PC3, HCTwt, and HCT(-/-). Several compounds demonstrated a relatively high cytotoxic activity vs. LNCaP cells (IC50 = 1.2-3.5 µM) and a reasonable selectivity index (SI = 3-10). Confocal microscopy revealed that the conjugate of propargyl-substituted dispiro-indolinone with the fluorescent dye Sulfo-Cy5-azide was mainly localized in the cytoplasm of HEK293 cells. P388-inoculated mice and HCT116-xenograft BALB/c nude mice were used to evaluate the anticancer activity of compound 29 in vivo. Particularly, the TGRI value for the P388 model was 93% at the final control timepoint. No mortality was registered among the population up to day 31 of the study. In the HCT116 xenograft model, the compound (170 mg/kg, i.p., o.d., 10 days) provided a T/C ratio close to 60% on day 8 after the treatment was completed. The therapeutic index-estimated as LD50/ED50-for compound 29 in mice was ≥2.5. Molecular docking studies were carried out to predict the possible binding modes of the examined molecules towards MDM2 as the feasible biological target. However, such a mechanism was not confirmed by Western blot data and, apparently, the synthesized compounds have a different mechanism of cytotoxic action.


Assuntos
Antineoplásicos , Humanos , Animais , Camundongos , Relação Estrutura-Atividade , Oxindóis/farmacologia , Simulação de Acoplamento Molecular , Camundongos Nus , Células HEK293 , Antineoplásicos/química , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Estrutura Molecular
6.
Bioorg Med Chem Lett ; 71: 128840, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35661685

RESUMO

We report an improved series of ligands targeting prostate specific membrane antigen (PSMA). The new compounds were designed by the introduction of changes in the structure of the aromatic fragment at ε-nitrogen atom of lysine that resulted in improved biological parameters. Some of them demonstrated high selectivity and nanomolar IC50 values. We synthesized and tested two conjugates with a fluorescent label Sulfo-Cy5 as an example of the use of the obtained PSMA inhibitors as a basis for the creation of diagnostic preparations.


Assuntos
Lisina , Neoplasias da Próstata , Antígenos de Superfície , Linhagem Celular Tumoral , Glutamato Carboxipeptidase II , Humanos , Ligantes , Masculino , Nitrogênio
7.
Molecules ; 27(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35956925

RESUMO

The efficacy of aprotinin combinations with selected antiviral-drugs treatment of influenza virus and coronavirus (SARS-CoV-2) infection was studied in mice models of influenza pneumonia and COVID-19. The high efficacy of the combinations in reducing virus titer in lungs and body weight loss and in increasing the survival rate were demonstrated. This preclinical study can be considered a confirmatory step before introducing the combinations into clinical assessment.


Assuntos
Tratamento Farmacológico da COVID-19 , Influenza Humana , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Aprotinina/uso terapêutico , Humanos , Influenza Humana/tratamento farmacológico , Camundongos , SARS-CoV-2
8.
Bioconjug Chem ; 32(4): 763-781, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33691403

RESUMO

Herein, we describe the design, synthesis, and biological evaluation of novel betulin and N-acetyl-d-galactosamine (GalNAc) glycoconjugates and suggest them as targeted agents against hepatocellular carcinoma. We prepared six conjugates derived via the C-3 and C-28 positions of betulin with one or two saccharide ligands. These molecules demonstrate high affinity to the asialoglycoprotein receptor (ASGPR) of hepatocytes assessed by in silico modeling and surface plasmon resonance tests. Cytotoxicity studies in vitro revealed a bivalent conjugate with moderate activity, selectivity of action, and cytostatic properties against hepatocellular carcinoma cells HepG2. An additional investigation confirmed the specific engagement with HepG2 cells by the enhanced generation of reactive oxygen species. Stability tests demonstrated its lability to acidic media and to intracellular enzymes. Therefore, the selected bivalent conjugate represents a new potential agent targeted against hepatocellular carcinoma. Further extensive studies of the cellular uptake in vitro and the real-time microdistribution in the murine liver in vivo for fluorescent dye-labeled analogue showed its selective internalization into hepatocytes due to the presence of GalNAc ligand in comparison with reference compounds. The betulin and GalNAc glycoconjugates can therefore be considered as a new strategy for developing therapeutic agents based on natural triterpenoids.


Assuntos
Acetilgalactosamina/química , Antineoplásicos/farmacologia , Receptor de Asialoglicoproteína/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Triterpenos/química , Antineoplásicos/química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Corantes Fluorescentes/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Ressonância de Plasmônio de Superfície
9.
Mol Pharm ; 18(1): 461-468, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33264010

RESUMO

In this work, we have developed covalent and low molecular weight docetaxel delivery systems based on conjugation with N-acetyl-d-galactosamine and studied their properties related to hepatocellular carcinoma cells. The resulting glycoconjugates have an excellent affinity to the asialoglycoprotein receptor (ASGPR) in the nanomolar range of concentrations and a high cytotoxicity level comparable to docetaxel. Likewise, we observed the 21-75-fold increase in water solubility in comparison with parent docetaxel and prodrug lability to intracellular conditions with half-life values from 25.5 to 42 h. We also found that the trivalent conjugate possessed selective toxicity against hepatoma cells vs control cell lines (20-35 times). The absence of such selectivity in the case of monovalent conjugates indicates the effect of ligand valency. Specific ASGPR-mediated cellular uptake of conjugates was proved in vitro using fluorescent-labeled analogues. In addition, we showed an enhanced generation of reactive oxygen species in the HepG2 cells, which could be inhibited by the natural ligand of ASGPR. Overall, the obtained results highlight the potential of ASGPR-directed cytostatic taxane drugs for selective therapy of hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Docetaxel/administração & dosagem , Glicoconjugados/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/administração & dosagem , Células A549 , Receptor de Asialoglicoproteína/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Portadores de Fármacos/química , Células HEK293 , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/efeitos dos fármacos , Neoplasias Hepáticas/metabolismo , Células PC-3
10.
Bioorg Med Chem Lett ; 43: 128055, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33892103

RESUMO

The antibacterial properties of close noscapine analogs have not been previously reported. We used our pDualrep2 double-reporter High Throughput Screening (HTS) platform to identify a series of noscapine derivatives with promising antibacterial activity. The platform is based on RPF (SOS-response/DNA damage) and Katushka2S (inhibition of translation) proteins and simultaneously provides information on antibacterial activity and the mechanism of action of small-molecule compounds against E. coli. The most potent compound exhibited an MIC of 13.5 µM(6.25 µg/ml) and a relatively low cytotoxicity against HEK293 cells (CC50 = 71 µM, selectivity index: ~5.5). Some compounds from this series induced average Katushka2S reporter signals, indicating inhibition of translation machinery in the bacteria; however, these compounds did not attenuate translation in vitro in a luciferase-based translation assay. The most effective compounds did not significantly arrest the mitotic cycle in HEK293 cells, in contrast to the parent compound in a flow cytometry assay. Several molecules showed activity against clinically relevant gram-negative and gram-positive bacterial strains. Compounds from the discovered series can be reasonably regarded as good templates for further development and evaluation.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Noscapina/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Noscapina/síntese química , Noscapina/química , Relação Estrutura-Atividade
11.
Bioconjug Chem ; 31(5): 1313-1319, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32379426

RESUMO

Since the asialoglycoprotein receptor (also known as the "Ashwell-Morell receptor" or ASGPR) was discovered as the first cellular mammalian lectin, numerous drug delivery systems have been developed and several gene delivery systems associated with multivalent ligands for liver disease targeting are undergoing clinical trials. The success of these systems has facilitated the further study of new ligands with comparable or higher affinity and less synthetic complexity. Herein, we designed two novel trivalent ligands based on the esterification of tris(hydroxymethyl) aminomethane (TRIS) followed by the azide-alkyne Huisgen cycloaddition with azido N-acetyl-d-galactosamine. The presented triazolyl glycoconjugates exhibited good binding to ASGPR, which was predicted using in silico molecular docking and assessed by a surface plasmon resonance (SPR) technique. Moreover, we demonstrated the low level of in vitro cytotoxicity, as well as the optimal spatial geometry and the required amphiphilic balance, for new, easily accessible ligands. The conjugate of a new ligand with Cy5 dye exhibited selective penetration into HepG2 cells in contrast to the ASGPR-negative PC3 cell line.


Assuntos
Receptor de Asialoglicoproteína/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Alcinos/química , Receptor de Asialoglicoproteína/química , Azidas , Técnicas de Química Sintética , Desenho de Fármacos , Esterificação , Galactosamina/química , Células Hep G2 , Humanos , Ligantes , Metano/síntese química , Metano/química , Metano/metabolismo , Metano/farmacologia , Simulação de Acoplamento Molecular , Células PC-3 , Conformação Proteica
12.
Bioorg Med Chem ; 28(20): 115716, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33069072

RESUMO

A series of novel small-molecule pan-genotypic hepatitis C virus (HCV) NS5A inhibitors with picomolar activity containing 2-[(2S)-pyrrolidin-2-yl]-5-[4-(4-{2-[(2S)-pyrrolidin-2-yl]-1H-imidazol-5-yl}buta-1,3-diyn-1-yl)phenyl]-1H-imidazole core was designed based on molecular modeling study and SAR analysis. The constructed in silico model and docking study provide a deep insight into the binding mode of this type of NS5A inhibitors. Based on the predicted binding interface we have prioritized the most crucial diversity points responsible for improving antiviral activity. The synthesized molecules were tested in a cell-based assay, and compound 1.12 showed an EC50 value in the range of 2.9-34 pM against six genotypes of NS5A HCV, including gT3a, and demonstrated favorable pharmacokinetic profile in rats. This lead compound can be considered as an attractive candidate for further clinical evaluation.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Imidazóis/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Antivirais/síntese química , Antivirais/química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Genótipo , Humanos , Imidazóis/síntese química , Imidazóis/química , Masculino , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
13.
Bioorg Chem ; 100: 103900, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32428745

RESUMO

Three new and complementary approaches to S-arylation of 2-thiohydantoins have been developed: copper-catalyzed cross coupling with either arylboronic acids or aryl iodides under mild conditions, or direct nucleophilic substitution in activated aryl halides. For 38 diverse compounds, reaction yields for all three methods have been determined. Selected by molecular docking, they have been tested on androgen receptor activation, and p53-Mdm2 regulation, and A549, MCF7, VA13, HEK293T, PC3, LnCAP cell lines for cytotoxicity, Two of them turned out to be promising as androgen receptor activators (likely by allosteric regulation), and another one is shown to activate the p53 cascade. It is hoped that 2-thiohydantoin S-arylidenes are worth further studies as biologically active compounds.


Assuntos
Androgênios/química , Androgênios/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Tioidantoínas/química , Tioidantoínas/farmacologia , Regulação Alostérica/efeitos dos fármacos , Androgênios/síntese química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Receptores Androgênicos/metabolismo , Tioidantoínas/síntese química , Proteína Supressora de Tumor p53/metabolismo
14.
Mol Divers ; 24(1): 233-239, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30949901

RESUMO

A series of 5-oxo-4H-pyrrolo[3,2-b]pyridine derivatives was identified as novel class of highly potent antibacterial agents during an extensive large-scale high-throughput screening (HTS) program utilizing a unique double-reporter system-pDualrep2. The construction of the reporter system allows us to perform visual inspection of the underlying mechanism of action due to two genes-Katushka2S and RFP-which encode the proteins with different imaging signatures. Antibacterial activity of the compounds was evaluated during the initial HTS round and subsequent rescreen procedure. The most active molecule demonstrated a MIC value of 3.35 µg/mL against E. coli with some signs of translation blockage (low Katushka2S signal) and no SOS response. The compound did not demonstrate cytotoxicity in standard cell viability assay. Subsequent structural morphing and follow-up synthesis may result in novel compounds with a meaningful antibacterial potency which can be reasonably regarded as an attractive starting point for further in vivo investigation and optimization.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Indolizinas/química , Piridinas/química , Sobrevivência Celular , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
15.
Bioorg Med Chem Lett ; 29(10): 1246-1255, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30904185

RESUMO

Prostate-specific membrane antigen (PSMA), also known as glutamate carboxypeptidase II (GCPII), has recently emerged as a prominent biomarker of prostate cancer (PC) and as an attractive protein trap for drug targeting. At the present time, several drugs and molecular diagnostic tools conjugated with selective PSMA ligands are actively evaluated in different preclinical and clinical trials. In the current work, we discuss design, synthesis and a preliminary biological evaluation of PSMA-specific small-molecule carrier equipped by Doxorubicin (Dox). We have introduced an unstable azo-linker between Dox and the carrier hence the designed compound does release the active substance inside cancer cells thereby providing a relatively high Dox concentration in nuclei and a relevant cytotoxic effect. In contrast, we have also synthesized a similar conjugate with a stable amide linker and it did not release the drug at all. This compound was predominantly accumulated in cytoplasm and did not cause cell death. Preliminary in vivo evaluation has showed good efficiency for the degradable conjugate against PC3-PIP(PSMA+)-containing xenograft mine. Thus, we have demonstrated that the conjugate can be used as a template to design novel analogues with improved targeting, anticancer activity and lower rate of potential side effects. 3D molecular docking study has also been performed to elucidate the underlying mechanism of binding and to further optimization of the linker area for improving the target affinity.


Assuntos
Antígenos de Superfície/química , Antineoplásicos/síntese química , Doxorrubicina/química , Glutamato Carboxipeptidase II/química , Animais , Antígenos de Superfície/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sítios de Ligação , Linhagem Celular Tumoral , Núcleo Celular/química , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Glutamato Carboxipeptidase II/metabolismo , Humanos , Ligantes , Masculino , Camundongos , Simulação de Acoplamento Molecular , Neoplasias da Próstata/tratamento farmacológico , Estrutura Terciária de Proteína , Transplante Heterólogo
16.
Bioorg Med Chem Lett ; 29(16): 2229-2235, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31248772

RESUMO

Prostate cancer (PC) is the second most commonly occurring cancer in men. Conventional chemotherapy has wide variety of disadvantages such as high systemic toxicity and low selectivity. Targeted drug delivery is a promising approach to decrease side effects of therapy. Prostate specific membrane antigen (PSMA) is overexpressed in prostate cancer cells while low level of expression is observed in normal cells. In this study we describe the development of Glu-urea-Lys based PSMA-targeting conjugates with paclitaxel. A series of new PSMA targeting conjugates with paclitaxel was designed and synthesized. The cytotoxicity of conjugates was evaluated against prostate (LNCaP, 22Rv1 and PC-3) and non-prostate (Hek293T, VA13, A549 and MCF-7) cell lines. The most promising conjugate 21 was examined in vivo using 22Rv1 xenograft mice model. It demonstrated good efficiency comparable with paclitaxel, while reduced toxicity. 3D molecular docking study was also performed to understand underlying mechanism of binding and further optimization of the linker substructure and conjugates structure for improving the target affinity. These conjugates may be useful for further design of novel PSMA targeting delivery systems for PC.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Paclitaxel/síntese química , Neoplasias da Próstata/tratamento farmacológico , Animais , Humanos , Masculino , Camundongos
17.
Bioorg Med Chem Lett ; 28(3): 503-508, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29254645

RESUMO

Asialoglycoprotein receptor (ASGP-R) belongs to a wide family of C-type lectins and it is currently regarded as an attractive protein in the field of targeted drug delivery (TDD). It is abundantly expressed in hepatocytes and can be found predominantly on the sinusoidal surface especially of HepG2 cells. Therefore, ASGP-R can be used for the TDD of anticancer therapeutics against HCC and molecular diagnostic tools. To date, a variety of mono- and multivalent selective ASGP-R ligands have been discovered. Although many of these compounds have demonstrated a relatively high binding affinity towards the target, the reported synthetic schemes are not handled, complicated and include many non-trivial steps. In the current study, we describe a convenient and versatile synthetic approach to novel monovalent drug-conjugates containing N-acetyl-2-deoxy-2-aminogalactopyranose fragment as an ASGP-R-recognition "core-head" and well-known nonselective cytostatic - Doxorubicin (Dox). This is the first example of the direct conjugation of a drug molecule to the ASGP-targeted warhead by a really convenient manner via a simple linker sequence. The performed MTS-based biological evaluation in HepG2 cells revealed the novel conjugates as having anticancer activity. Confocal microscopy showed that the molecules readily penetrated HepG2 membrane and were mainly localized within the cytoplasm instead of the nucleus. Per contra, Dox under the same conditions demonstrated good anticancer activity and was predominantly concentrated in the nucleus. Therefore, we speculate that the amide "trigger" that we have used in this study for linker attachment is a sufficiently stable inside the cells to be enzymatically or spontaneously degraded. As a consequence, we did not observe the release of the drug. Ligands containing triggers that are more liable towards endogenous hydrolysis within the tissue of targeting are strongly required.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Receptor de Asialoglicoproteína/antagonistas & inibidores , Doxorrubicina/farmacologia , Galactose/farmacologia , Antibióticos Antineoplásicos/síntese química , Antibióticos Antineoplásicos/química , Receptor de Asialoglicoproteína/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Galactose/análogos & derivados , Galactose/química , Células Hep G2 , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
18.
Bioorg Med Chem Lett ; 28(3): 382-387, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29269214

RESUMO

Asialoglycoprotein receptor (ASGP-R) is a promising biological target for drug delivery into hepatoma cells. Nevertheless, there are only few examples of small-molecule conjugates of ASGP-R selective ligand equipped by a therapeutic agent for the treatment of hepatocellular carcinoma (HCC). In the present work, we describe a convenient and versatile synthetic approach to novel mono- and multivalent drug-conjugates containing N-acetyl-2-deoxy-2-aminogalactopyranose and anticancer drug - paclitaxel (PTX). Several molecules have demonstrated high affinity towards ASGP-R and good stability under physiological conditions, significant in vitro anticancer activity comparable to PTX, as well as good internalization via ASGP-R-mediated endocytosis. Therefore, the conjugates with the highest potency can be regarded as a promising therapeutic option against HCC.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Receptor de Asialoglicoproteína/antagonistas & inibidores , Carcinoma Hepatocelular/tratamento farmacológico , Galactose/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Paclitaxel/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Receptor de Asialoglicoproteína/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Galactose/análogos & derivados , Galactose/química , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Estrutura Molecular , Paclitaxel/síntese química , Paclitaxel/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
19.
Antimicrob Agents Chemother ; 60(12): 7481-7489, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27736765

RESUMO

In order to accelerate drug discovery, a simple, reliable, and cost-effective system for high-throughput identification of a potential antibiotic mechanism of action is required. To facilitate such screening of new antibiotics, we created a double-reporter system for not only antimicrobial activity detection but also simultaneous sorting of potential antimicrobials into those that cause ribosome stalling and those that induce the SOS response due to DNA damage. In this reporter system, the red fluorescent protein gene rfp was placed under the control of the SOS-inducible sulA promoter. The gene of the far-red fluorescent protein, katushka2S, was inserted downstream of the tryptophan attenuator in which two tryptophan codons were replaced by alanine codons, with simultaneous replacement of the complementary part of the attenuator to preserve the ability to form secondary structures that influence transcription termination. This genetically modified attenuator makes possible Katushka2S expression only upon exposure to ribosome-stalling compounds. The application of red and far-red fluorescent proteins provides a high signal-to-background ratio without any need of enzymatic substrates for detection of the reporter activity. This reporter was shown to be efficient in high-throughput screening of both synthetic and natural chemicals.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Dano ao DNA , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Corantes Fluorescentes/química , Genes Reporter , Engenharia Genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Regiões Promotoras Genéticas , Ribossomos/genética , Resposta SOS em Genética , Proteína Vermelha Fluorescente
20.
Mol Pharm ; 13(3): 945-63, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26886442

RESUMO

Within the past decade several novel targets have been indicated as key players in Alzheimer-type dementia and associated conditions, including a "frightening" memory loss as well as severe cognitive impairments. These proteins are deeply implicated in crucial cell processes, e.g., autophagy, growth and progression, apoptosis, and metabolic equilibrium. Since recently, 5-HT6R has been considered as one of the most prominent biological targets in AD drug therapy. Therefore, we investigated the potential procognitive and neuroprotective effects of our novel selective 5-HT6R antagonist, AVN-211. During an extensive preclinical evaluation the lead compound demonstrated a relatively high therapeutic potential and improved selectivity toward 5-HT6R as compared to reference drug candidates. It was thoroughly examined in different in vivo behavioral models directly related to AD and showed evident improvements in cognition and learning. In many cases, the observed effect was considerably greater than that determined for the reported drugs and drug candidates, including memantine, SB-742457, and Lu AE58054, evaluated under the same conditions. In addition, AVN-211 showed a similar or better anxiolytic efficacy than fenobam, rufinamide, lorazepam, and buspirone in an elevated plus-maze model, elevated platform, and open field tests. The compound demonstrated low toxicity and no side effects in vivo, an appropriate pharmacokinetic profile, and stability. In conclusion, AVN-211 significantly delayed or partially halted the progressive decline in memory function associated with AD, which makes it an interesting drug candidate for the treatment of neurodegenerative and psychiatric disorders. Advanced clinical trials are currently under active discussion and in high priority.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Fígado/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Receptores de Serotonina/química , Animais , Células CACO-2 , Permeabilidade da Membrana Celular/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Fígado/metabolismo , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fármacos Neuroprotetores/farmacocinética , Pirazóis/farmacocinética , Pirimidinas/farmacocinética , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores de Serotonina/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA