Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273347

RESUMO

In patients with Alzheimer's disease (AD) and in animal models, the increased accumulation of amyloid ß (Aß) in retinal blood vessels strongly correlates with brain amyloid deposits and cognitive decline. The accumulation of Aß in blood vessels may result from impaired transcytosis and a dysfunctional ocular glymphatic system in AD. High-dose fish oil (FO) supplementation has been shown to significantly change the expression of major facilitator superfamily domain-containing protein 2a (Mfsd2a), a key regulator of transcytosis, and Aquaporin 4 (Aqp4), an essential component of the glymphatic system in the retinas of WT mice. We examined the expression of Mfsd2a and Aqp4 in the retinas of 4-month-old 5xFAD female mice supplemented with high-dose FO for three weeks. There was a significant increase in Mfsd2a expression in 5xFAD retinas supplemented with FO compared to control 5xFAD mice. Additionally, the increase in Aqp4 expression observed in 4-month-old 5xFAD retinas, indicative of an impaired glymphatic system, was significantly decreased. Simultaneously, Aß accumulation in 5xFAD retinal blood vessels was reduced following FO supplementation. These findings suggest that high-dose FO supplementation could serve as an adjunct in developing new treatments aimed at improving the regulation of transcytosis or the function of the glymphatic system in the AD retina.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Aquaporina 4 , Suplementos Nutricionais , Modelos Animais de Doenças , Óleos de Peixe , Camundongos Transgênicos , Vasos Retinianos , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Aquaporina 4/metabolismo , Aquaporina 4/genética , Peptídeos beta-Amiloides/metabolismo , Camundongos , Feminino , Vasos Retinianos/metabolismo , Vasos Retinianos/efeitos dos fármacos , Óleos de Peixe/farmacologia , Óleos de Peixe/administração & dosagem , Simportadores/metabolismo , Simportadores/genética , Humanos
2.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762391

RESUMO

Cerebral amyloid angiopathy (CAA) is characterized by amyloid ß (Aß) accumulation in the blood vessels and is associated with cognitive impairment in Alzheimer's disease (AD). The increased accumulation of Aß is also present in the retinal blood vessels and a significant correlation between retinal and brain amyloid deposition was demonstrated in living patients and animal AD models. The Aß accumulation in the retinal blood vessels can be the result of impaired transcytosis and/or the dysfunctional ocular glymphatic system in AD and during aging. We analyzed the changes in the mRNA and protein expression of major facilitator superfamily domain-containing protein2a (Mfsd2a), the major regulator of transcytosis, and of Aquaporin4 (Aqp4), the key player implicated in the functioning of the glymphatic system, in the retinas of 4- and 12-month-old WT and 5xFAD female mice. A strong decrease in the Mfsd2a mRNA and protein expression was observed in the 4 M and 12 M 5xFAD and 12 M WT retinas. The increase in the expression of srebp1-c could be at least partially responsible for the Mfsd2a decrease in the 4 M 5xFAD retinas. The decrease in the pericyte (CD13+) coverage of retinal blood vessels in the 4 M and 12 M 5xFAD retinas and in the 12 M WT retinas suggests that pericyte loss could be associated with the Mfsd2a downregulation in these experimental groups. The observed increase in Aqp4 expression in 4 M and 12 M 5xFAD and 12 M WT retinas accompanied by the decreased perivascular Aqp4 expression is indicative of the impaired glymphatic system. The findings in this study reveal the impaired Mfsd2a and Aqp4 expression and Aqp4 perivascular mislocalization in retinal blood vessels during physiological (WT) and pathological (5xFAD) aging, indicating their importance as putative targets for the development of new treatments that can improve the regulation of transcytosis or the function of the glymphatic system.

3.
Biogerontology ; 19(2): 121-132, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29340834

RESUMO

Albeit aging is an inevitable process, the rate of aging is susceptible to modifications. Dietary restriction (DR) is a vigorous nongenetic and nonpharmacological intervention that is known to delay aging and increase healthspan in diverse species. This study aimed to compare the impact of different restricting feeding regimes such as limited daily feeding (LDF, 60% AL) and intermittent feeding (IF) on brain energy homeostasis during aging. The analysis was focused on the key molecules in glucose and cholesterol metabolism in the cortex and hippocampus of middle-aged (12-month-old) and aged (24-month-old) male Wistar rats. We measured the impact of different DRs on the expression levels of AMPK, glucose transporters (GLUT1, GLUT3, GLUT4), and the rate-limiting enzyme in the cholesterol synthesis pathway (HMGCR). Additionally, we assessed the changes in the amounts of cholesterol, its metabolite, and precursors following LDF and IF. IF decreased the levels of AMPK and pAMPK in the cortex while the increased levels were detected in the hippocampus. Glucose metabolism was more affected in the cortex, while cholesterol metabolism was more influenced in the hippocampus. Overall, the hippocampus was more resilient to the DRs, with fewer changes compared to the cortex. We showed that LDF and IF differently affected the brain energy homeostasis during aging and that specific brain regions exhibited distinct vulnerabilities towards DRs. Consequently, special attention should be paid to the DR application among elderly as different phases of aging do not respond equally to altered nutritional regimes.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Restrição Calórica/métodos , Adenilato Quinase/metabolismo , Animais , Glicemia/metabolismo , Córtex Cerebral/metabolismo , Colesterol/metabolismo , Metabolismo Energético , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Hipocampo/metabolismo , Homeostase , Metabolismo dos Lipídeos , Masculino , Modelos Animais , Ratos , Ratos Wistar
4.
CNS Neurosci Ther ; 30(3): e14188, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-36971205

RESUMO

INTRODUCTION: In the present study, we assessed the effects of the hyper-harmonized-hydroxylated fullerene-water complex (3HFWC) on Alzheimer's disease (AD) neuropathological hallmarks in 5XFAD mice, an AD animal model. METHODS: The 3-week-old 5XFAD mice were exposed to 3HFWC water solution ad libitum for 3 months in the presymptomatic phase of pathology. The functional effects of the treatment were confirmed through near-infrared spectroscopy (NIRS) analysis through machine learning (ML) using artificial neural networks (ANNs) to classify the control and 3HFWC-treated brain tissue samples. The effects of 3HFWC treatment on amyloid-ß (Aß) accumulation, plaque formation, gliosis, and synaptic plasticity in cortical and hippocampal tissue were assessed. RESULTS: The 3HFWC treatment significantly decreased the amyloid-ß plaque load in specific parts of the cerebral cortex. At the same time, 3HFWC treatment did not induce the activation of glia (astrocytes and microglia) nor did it negatively affect synaptic protein markers (GAP-43, synaptophysin, and PSD-95). CONCLUSION: The obtained results point to the potential of 3HFWC, when applied in the presymptomatic phase of AD, to interfere with amyloid plaque formation without inducing AD-related pathological processes such as neuroinflammation, gliosis, and synaptic vulnerability.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Gliose , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Água , Modelos Animais de Doenças
5.
Pharmaceuticals (Basel) ; 17(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38931336

RESUMO

Fear-related disorders, including post-traumatic stress disorder (PTSD), and anxiety disorders are pervasive psychiatric conditions marked by persistent fear, stemming from its dysregulated acquisition and extinction. The primary treatment for these disorders, exposure therapy (ET), relies heavily on fear extinction (FE) principles. Adolescence, a vulnerable period for developing psychiatric disorders, is characterized by neurobiological changes in the fear circuitry, leading to impaired FE and increased susceptibility to relapse following ET. Ketamine, known for relieving anxiety and reducing PTSD symptoms, influences fear-related learning processes and synaptic plasticity across the fear circuitry. Our study aimed to investigate the effects of ketamine (10 mg/kg) on FE in adolescent male C57 BL/6 mice at the behavioral and molecular levels. We analyzed the protein and gene expression of synaptic plasticity markers in the hippocampus (HPC) and prefrontal cortex (PFC) and sought to identify neural correlates associated with ketamine's effects on adolescent extinction learning. Ketamine ameliorated FE in the adolescent males, likely affecting the consolidation and/or recall of extinction memory. Ketamine also increased the Akt and mTOR activity and the GluA1 and GluN2A levels in the HPC and upregulated BDNF exon IV mRNA expression in the HPC and PFC of the fear-extinguished mice. Furthermore, ketamine increased the c-Fos expression in specific brain regions, including the ventral HPC (vHPC) and the left infralimbic ventromedial PFC (IL vmPFC). Providing a comprehensive exploration of ketamine's mechanisms in adolescent FE, our study suggests that ketamine's effects on FE in adolescent males are associated with the activation of hippocampal Akt-mTOR-GluA1 signaling, with the vHPC and the left IL vmPFC as the proposed neural correlates.

6.
Expert Opin Drug Deliv ; 21(2): 279-307, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38349540

RESUMO

INTRODUCTION: Photodynamic therapy (PDT) has gained significant attention due to its superiority over conventional treatments. In the context of skin cancers and nonmalignant skin diseases, topical application of photosensitizer formulations onto affected skin, followed by illumination, offers distinct advantages. Topical PDT simplifies therapy by providing easy access to the skin, increasing drug concentration within the target area, and confining residual photosensitivity to the treated skin. However, the effectiveness of topical PDT is often hindered by challenges such as limited skin penetration or photosensitizer instability. Additionally, the hypoxic tumor environment poses further limitations. Nanocarriers present a promising solution to address these challenges. AREAS COVERED: The objective of this review is to comprehensively explore and highlight the role of various nanocarriers in advancing topical PDT for the treatment of skin diseases. The primary focus is to address the challenges associated with conventional topical PDT approaches and demonstrate how nanotechnology-based strategies can overcome these challenges, thereby improving the overall efficiency and efficacy of PDT. EXPERT OPINION: Nanotechnology has revolutionized the field of PDT, offering innovative tools to combat the unfavorable features of photosensitizers and hurdles in PDT. Nanocarriers enhance skin penetration and stability of photosensitizers, provide controlled drug release, reduce needed dose, increase production of reactive oxygen species, while reducing side effects, thereby improving PDT effectiveness.


Assuntos
Fotoquimioterapia , Dermatopatias , Neoplasias Cutâneas , Humanos , Fármacos Fotossensibilizantes/uso terapêutico , Dermatopatias/tratamento farmacológico , Pele
7.
Chem Biol Interact ; 394: 110996, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38593908

RESUMO

Diabetic retinopathy is not cured efficiently and changes of lifestyle measures may delay early retinal injury in diabetes. The aim of our study was to investigate the effects of reduced daily light exposure on retinal vascular changes in streptozotocin (STZ)-induced model of DM with emphasis on inflammation, Aqp4 expression, visual cycle and cholesterol metabolism-related gene expression in rat retina and RPE. Male Wistar rats were divided into the following groups: 1. control; 2. diabetic group (DM) treated with streptozotocin (100 mg/kg); 3. group exposed to light/dark cycle 6/18 h (6/18); 4. diabetic group exposed to light/dark cycle 6/18 h (DM+6/18). Retinal vascular abnormalities were estimated based on lectin staining, while the expression of genes involved in the visual cycle, cholesterol metabolism, and inflammation was determined by qRT-PCR. Reduced light exposure alleviated vasculopathy, gliosis and the expression of IL-1 and TNF-α in the retina with increased perivascular Aqp4 expression. The expression of genes involved in visual cycle and cholesterol metabolism was significantly up-regulated in RPE in DM+6/18 vs. DM group. In the retina only the expression of APOE was significantly higher in DM+6/18 vs. DM group. Reduced light exposure mitigates vascular changes and gliosis in DM via its anti-inflammatory effect, increased retinal cholesterol turnover and perivascular Aqp4 expression.


Assuntos
Colesterol , Diabetes Mellitus Experimental , Retinopatia Diabética , Gliose , Luz , Ratos Wistar , Retina , Estreptozocina , Animais , Masculino , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Retina/metabolismo , Retina/patologia , Retina/efeitos da radiação , Colesterol/metabolismo , Ratos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Gliose/patologia , Gliose/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Anti-Inflamatórios/farmacologia , Aquaporina 4/metabolismo , Aquaporina 4/genética , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia
8.
Life Sci ; 326: 121803, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37245840

RESUMO

Major depressive disorder (MDD) afflicts approximately 5 % of the world population, and about 30-50 % of patients who receive classical antidepressant medications do not achieve complete remission (treatment resistant depressive patients). Emerging evidence suggests that targeting opioid receptors mu (MOP), kappa (KOP), delta (DOP), and the nociceptin/orphanin FQ receptor (NOP) may yield effective therapeutics for stress-related psychiatric disorders. As depression and pain exhibit significant overlap in their clinical manifestations and molecular mechanisms involved, it is not a surprise that opioids, historically used to alleviate pain, emerged as promising and effective therapeutic options in the treatment of depression. The opioid signaling is dysregulated in depression and numerous preclinical studies and clinical trials strongly suggest that opioid modulation can serve as either an adjuvant or even an alternative to classical monoaminergic antidepressants. Importantly, some classical antidepressants require the opioid receptor modulation to exert their antidepressant effects. Finally, ketamine, a well-known anesthetic whose extremely efficient antidepressant effects were recently discovered, was shown to mediate its antidepressant effects via the endogenous opioid system. Thus, although opioid system modulation is a promising therapeutical venue in the treatment of depression further research is warranted to fully understand the benefits and weaknesses of such approach.


Assuntos
Transtorno Depressivo Maior , Ketamina , Humanos , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Ketamina/farmacologia , Ketamina/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Depressão/tratamento farmacológico , Antagonistas de Entorpecentes/farmacologia , Receptores Opioides , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Receptores Opioides mu
9.
Front Nutr ; 10: 1330414, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38328686

RESUMO

Introduction: During fetal development, the proper development of neural and visual systems relies on the maternal supplementation of omega-3 fatty acids through placental transfer. Pregnant women are strongly advised to augment their diet with additional sources of omega-3, such as fish oil (FO). This supplementation has been linked to a reduced risk of preterm birth, pre-eclampsia, and perinatal depression. Recently, higher doses of omega-3 supplementation have been recommended for pregnant women. Considering that omega-3 fatty acids, particularly docosahexaenoic acid (DHA), play a crucial role in maintaining the delicate homeostasis required for the proper functioning of the retina and photoreceptors the effects of high-dose fish oil (FO) supplementation during pregnancy and lactation on the retina and retinal pigmented epithelium (RPE) in healthy offspring warrant better understanding. Methods: The fatty acid content and the changes in the expression of the genes regulating cholesterol homeostasis and DHA transport in the retina and RPE were evaluated following the high-dose FO supplementation. Results: Our study demonstrated that despite the high-dose FO treatment during pregnancy and lactation, the rigorous DHA homeostasis in the retina and RPE of the two-month-old offspring remained balanced. Another significant finding of this study is the increase in the expression levels of major facilitator superfamily domain-containing protein (Mfsd2a), a primary DHA transporter. Mfsd2a also serves as a major regulator of transcytosis during development, and a reduction in Mfsd2a levels poses a major risk for the development of leaky blood vessels. Conclusion: Impairment of the blood-retinal barrier (BRB) is associated with the development of numerous ocular diseases, and a better understanding of how to manipulate transcytosis in the BRB during development can enhance drug delivery through the BRB or contribute to the repair of central nervous system (CNS) barriers.

10.
J Pers Med ; 13(5)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37240914

RESUMO

The aim of our study was to investigate the effects of a shortened daily photoperiod on anxiety-like behaviour, brain oxidative stress, lipid status and fatty acid composition of serum lipids in a streptozotocin (STZ)-induced model of diabetes mellitus in rats. Male Wistar rats were divided into the following groups: first group-control group (C12/12); second group-diabetic group (DM12/12; 100 mg/kg STZ); third group-control group exposed to a light/dark cycle 6/18 h (C6/18); fourth group-diabetic group exposed to a light/dark cycle 6/18 h (DM6/18). Anxiety-like behaviour was tested three weeks following STZ injection by elevated plus maze (EPM) and open-field test (OFT). Oxidative stress parameters were measured in the cortex, hippocampus and thalamus, while lipid status and fatty acid methyl esters (FAMEs) were measured in the serum. Both EPM and OFT showed a lower degree of anxiety-like behaviour in the DM6/18 vs. DM12/12 group. Lipid peroxidation in the cortex, hippocampus and thalamus was significantly lower in the DM6/18 vs. DM12/12 group (p < 0.05), associated with an increased level of antioxidant enzymes and protein thiols in the cortex and thalamus. In the DM6/18 group, oleic, vaccenic, dihomo-γ-linolenic and docosahexaenoic acid concentrations were significantly higher in comparison to the DM12/12 group. A shortened daily photoperiod alleviates anxiety-like behaviour in diabetic rats by reduced lipid peroxidation and changes in the serum fatty acids profile.

11.
Brain Sci ; 13(12)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38137155

RESUMO

Zaleplon is a positive allosteric modulator of the γ-aminobutyric acid (GABA)A receptor approved for the short-term treatment of insomnia. Previous publications on zaleplon have not addressed the proteins involved in its mechanism of action but have mostly referred to behavioral or pharmacological studies. Since both GABAergic and glutamatergic signaling have been shown to regulate wakefulness and sleep, we examined the effects of prolonged zaleplon treatment (0.625 mg/kg for 5 days) on these systems in the hippocampus of male Wistar rats. Western blot and immunohistochemical analyses showed that the upregulated components of GABAergic signaling (glutamate decarboxylase, vesicular GABA transporter, GABA, and α1 subunit of the GABAA receptor) were accompanied by increased protein levels in the glutamatergic system (vesicular glutamate transporter 1 and NR1, NR2A, and NR2B subunits of N-methyl-d-aspartate receptor). Our results, showing that zaleplon enhances GABA neurotransmission in the hippocampus, were not surprising. However, we found that treatment also increased glutamatergic signaling. This could be the result of the downregulation of adenosine A1 receptors, important modulators of the glutamatergic system. Further studies are needed to investigate the effects of the zaleplon-induced increase in hippocampal glutamatergic neurotransmission and the possible involvement of the adenosine system in zaleplon's mechanism of action.

12.
Front Behav Neurosci ; 16: 987697, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172468

RESUMO

Clinical depression is a multifactorial disorder and one of the leading causes of disability worldwide. The alterations in tryptophan metabolism such as changes in the levels of serotonin, kynurenine, and kynurenine acid have been implicated in the etiology of depression for more than 50 years. In recent years, accumulated evidence has revealed that gut microbial communities, besides being essential players in various aspects of host physiology and brain functioning are also implicated in the etiology of depression, particularly through modulation of tryptophan metabolism. Therefore, the aim of this review is to summarize the evidence of the role of gut bacteria in disturbed tryptophan metabolism in depression. We summed up the effects of microbiota on serotonin, kynurenine, and indole pathway of tryptophan conversion relevant for understanding the pathogenesis of depressive behavior. Moreover, we reviewed data regarding the therapeutic effects of probiotics, particularly through the regulation of tryptophan metabolites. Taken together, these findings can open new possibilities for further improvement of treatments for depression based on the microbiota-mediated modulation of the tryptophan pathway.

13.
Handb Clin Neurol ; 184: 481-495, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35034756

RESUMO

To adapt to the sustained demands of chronic stress, discrete brain circuits undergo structural and functional changes often resulting in anxiety disorders. In some individuals, anxiety disorders precede the development of motor symptoms of Parkinson's disease (PD) caused by degeneration of neurons in the substantia nigra (SN). Here, we present a circuit framework for probing a causal link between chronic stress, anxiety, and PD, which postulates a central role of abnormal neuromodulation of the SN's axon initial segment by brainstem inputs. It is grounded in findings demonstrating that the earliest PD pathologies occur in the stress-responsive, emotion regulation network of the brainstem, which provides the SN with dense aminergic and cholinergic innervation. SN's axon initial segment (AIS) has unique features that support the sustained and bidirectional propagation of activity in response to synaptic inputs. It is therefore, especially sensitive to circuit-mediated stress-induced imbalance of neuromodulation, and thus a plausible initiating site of neurodegeneration. This could explain why, although secondary to pathophysiologies in other brainstem nuclei, SN degeneration is the most extensive. Consequently, the cardinal symptom of PD, severe motor deficits, arise from degeneration of the nigrostriatal pathway rather than other brainstem nuclei. Understanding when and how circuit dysfunctions underlying anxiety can progress to neurodegeneration, raises the prospect of timed interventions for reversing, or at least impeding, the early pathophysiologies that lead to PD and possibly other neurodegenerative disorders.


Assuntos
Segmento Inicial do Axônio , Doença de Parkinson , Ansiedade , Transtornos de Ansiedade , Humanos , Substância Negra
14.
Life Sci ; 297: 120470, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35283177

RESUMO

The brain is the softest organ in the body, and any change in the mechanical properties of the tissue induces the activation of glial cells, astrocytes and microglia. Amyloid plaques, one of the main pathological features of Alzheimer's disease (AD), are substantially harder than the surrounding brain tissue and can activate astrocytes and microglia resulting in the glial engulfment of plaques. Durotaxis, a migratory preference towards stiffer tissue, is prompting microglia to form a mechanical barrier around plaques reducing amyloid ß (Aß) induced neurotoxicity. Mechanoreceptors are highly expressed in the brain, particularly in microglia. The large increase in the expression of the mechanoreceptor Piezo1 was observed in the brains from AD animal models and AD patients in plaque encompassing glia. Importantly, Piezo1 function is regulated via force-from-lipids through the lipid composition of the membrane and membranous incorporation of polyunsaturated fatty acids (PUFAs) can affect the function of Piezo1 altering mechanosensitive properties of the cell. On the other hand, PUFAs dietary supplementation can alter microglial polarization, the envelopment of amyloid plaques, and immune response and Piezo1 activity was implicated in the similar modulations of microglia behavior. Finally, PUFAs treatment is currently in use in medical trials as the therapy for sickle cell anemia, a disease linked with the mutations in Piezo1. Further studies are needed to elucidate the connection between PUFAs, Piezo1 expression, and microglia behavior in the AD brain. These findings could open new possibilities in harnessing microglia in AD and in developing novel therapeutic strategies.


Assuntos
Doença de Alzheimer , Ácidos Graxos , Canais Iônicos , Microglia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Placa Amiloide/patologia
15.
Brain Sci ; 12(10)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36291231

RESUMO

Glucocorticoids are the most potent anti-inflammatory agents known. Limited in vivo data are available to characterize the mechanism underlying their cognitive side effects and transient occurrence of steroid psychosis. Cholesterol is important for proper neurotransmission and brain plasticity, and disruption of its homeostasis in the brain has been closely associated with memory decline during aging and in age-related neurodegenerative disorders. In the present study, we assessed the direct effects of dexamethasone, a potent synthetic glucocorticoid, on the expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), apolipoprotein E (ApoE) and cholesterol 24S-hydroxylase (CYP46A1), major enzymes involved in cholesterol synthesis, metabolism, and excretion, respectively. The effects of the dexamethasone were examined during aging, in the cortex and hippocampus of 6-, 12- and 18-month-old rats, and following long-term food restriction (FR). The most prominent change observed was the age-related decrease in ApoE mRNA regardless of the food regimen applied. In animals kept on FR, this decrease was accompanied by an increase in the mRNA expression of HMGCR and CYP46A1. The present study also demonstrates that food restriction reversed most of the dexamethasone-induced changes in the expression of genes involved in regulation of cholesterol homeostasis in aging rats, in a region-specific manner.

16.
J Neurosci ; 28(4): 914-22, 2008 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-18216199

RESUMO

Gliogenesis requires the careful orchestration of migration, differentiation, and proliferation of progenitors. Signaling through the epidermal growth factor receptor (EGFR) has been implicated in regulating these processes in a variety of cell types, including neural progenitors. By retroviral infection, we constitutively expressed an EGFR-GFP fusion protein in white matter glial progenitors at postnatal day 3 of the rat forebrain in vivo and analyzed the development of these cells over the subsequent 15 weeks. EGFR-GFP+ cells remained proliferative and migratory, gradually populating the brains ipsilateral and contralateral to the side of viral infection, but never differentiated into mature glia. The accumulation of these cells doubled the total cell density in white matter and led to a 10-fold increase in the abundance of glial progenitors, giving rise to a progenitor "hyperplasia." The marker profile of infected cells, NG2+, olig2+, PDGFR-alpha+, nestin+, GFAP-, and CC1-, indicated a close resemblance to oligodendrocyte progenitors. Positive immunostaining for phosphorylated EGFR colocalized with punctate accumulation of EGFR-GFP, indicating that a subset of receptors was engaged in active signaling. Furthermore, EGF was required to observe phospho-tyrosine EGFR immunostaining of glial progenitors in culture. These observations suggest that constitutive EGFR expression can inhibit glial differentiation, but requires ligand as well.


Assuntos
Receptores ErbB/biossíntese , Fibras Nervosas Mielinizadas/patologia , Oligodendroglia/patologia , Transdução de Sinais/fisiologia , Células-Tronco/patologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Receptores ErbB/genética , Hiperplasia/metabolismo , Hiperplasia/patologia , Fibras Nervosas Mielinizadas/metabolismo , Oligodendroglia/metabolismo , Ratos , Ratos Sprague-Dawley , Células-Tronco/metabolismo
17.
Neural Regen Res ; 19(8): 1641-1642, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103220
18.
PLoS One ; 14(5): e0216726, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31095617

RESUMO

Dystrophic neurites and activated microglia are one of the main neuropathological characteristics of Alzheimer's disease (AD). Although the use of supplements with omega-3 fatty acids has been associated with reduced risk and lessened AD pathology, it still remains elusive whether such a treatment could affect dystrophic neurites (DNs) formation and microglia/macrophage behavior in the early phase of disease. We analyzed the effects of short-term (3 weeks) fish oil supplementation on DNs formation, tau hyperphosphorylation, Amyloid-beta peptide 1-42 (Aß42) levels and microglial/macrophage response to AD pathology in the parietal cortex of 4-month-old 5xFAD mice, a mouse model of AD. The present study shows for the first time that short-term FO supplementation applied in presymptomatic stage of AD, alters the behaviour of microglia/macrophages prompting them to establish a physical barrier around amyloid plaques. This barrier significantly suppresses DNs formation through the reduction of both Aß content and tau hyperphosphorylation. Moreover, the short-term FO treatment neither suppresses inflammation nor enhances phagocytic properties of microglia/macrophages in the response to Aß pathology, the effects most commonly attributed to the fish oil supplementation. Our findings suggest that fish oil consumption may play an important role in modulating microglial/macrophage response and ameliorating the AD pathology in presymptomatic stage of Alzheimer's disease.


Assuntos
Doença de Alzheimer/patologia , Doenças Assintomáticas , Óleos de Peixe/farmacologia , Macrófagos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Neuritos/patologia , Lobo Parietal/patologia , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Atrofia/prevenção & controle , Contagem de Células , Citocinas/metabolismo , Suplementos Nutricionais , Modelos Animais de Doenças , Macrófagos/imunologia , Camundongos , Microglia/patologia , Neuritos/efeitos dos fármacos , Lobo Parietal/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Fagocitose/efeitos dos fármacos , Fosfoproteínas/metabolismo , Fatores de Tempo , Proteínas tau/metabolismo
19.
Neuron ; 37(2): 197-207, 2003 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-12546816

RESUMO

In the olfactory epithelium (OE), generation of new neurons by neuronal progenitors is inhibited by a signal from neurons themselves. Here we provide evidence that this feedback inhibitory signal is growth and differentiation factor 11 (GDF11). Both GDF11 and its receptors are expressed by OE neurons and progenitors, and GDF11 inhibits OE neurogenesis in vitro by inducing p27(Kip1) and reversible cell cycle arrest in progenitors. Mice lacking functional GDF11 have more progenitors and neurons in the OE, whereas mice lacking follistatin, a GDF11 antagonist, show dramatically decreased neurogenesis. This negative autoregulatory action of GDF11 is strikingly like that of its homolog, GDF8/myostatin, in skeletal muscle, suggesting that similar strategies establish and maintain proper cell number during neural and muscular development.


Assuntos
Proteínas Morfogenéticas Ósseas/fisiologia , Homeostase/fisiologia , Sistema Nervoso/crescimento & desenvolvimento , Animais , Contagem de Células , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Diferenciação Celular/fisiologia , Inibidor de Quinase Dependente de Ciclina p27 , Retroalimentação/fisiologia , Feminino , Imunofluorescência , Folistatina/fisiologia , Fatores de Diferenciação de Crescimento , Hibridização In Situ , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Desenvolvimento Muscular/fisiologia , Regeneração Nervosa/fisiologia , Mucosa Olfatória/citologia , Mucosa Olfatória/crescimento & desenvolvimento , Mucosa Olfatória/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Gravidez , Transdução de Sinais/fisiologia , Células-Tronco/fisiologia , Proteínas Supressoras de Tumor/genética
20.
Nutrients ; 10(9)2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30200627

RESUMO

Long-term fish oil (FO) supplementation is able to improve Alzheimer's disease (AD) pathology. We aimed to determine the impact of short-term fish oil (FO) intake on phospholipids composition and plaque pathology in 5xFAD mice, a widely used animal model of AD. A 3-week-long FO supplementation administered at 3 months of age decreased the number of dense core plaques in the 5xFAD cortex and changed phospholipids in the livers and brains of wild-type (Wt) and 5xFAD mice. Livers of both genotypes responded by increase of n-3 and reciprocal decrease of n-6 fatty acids. In Wt brains, FO supplementation induced elevation of n-3 fatty acids and subsequent enhancement of n-6/n-3 ratio. However, in 5xFAD brains the improved n-6/n-3 ratio was mainly due to FO-induced decrease in arachidonic and adrenic n-6 fatty acids. Also, brain and liver abundance of n-3 fatty acids were strongly correlated in Wts, oppositely to 5xFADs where significant brain-liver correlation exists only for n-6 fatty acids. Expression of omega-3 transporter Mfs2a remained unchanged after FO supplementation. We have demonstrated that even a short-term FO intake improves the phospholipid composition and has a significant effect on plaque burden in 5xFAD brains when applied in early stages of AD pathology.


Assuntos
Doença de Alzheimer/dietoterapia , Encéfalo/metabolismo , Suplementos Nutricionais , Óleos de Peixe/administração & dosagem , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fosfolipídeos/metabolismo , Placa Amiloide , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Óleos de Peixe/metabolismo , Predisposição Genética para Doença , Fígado/patologia , Masculino , Camundongos Transgênicos , Fenótipo , Simportadores , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA