Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 22(15): 6292-6297, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35880910

RESUMO

We present an electron interferometer defined purely by electrostatic gating in an encapsulated bilayer graphene. This minimizes possible sample degradation introduced by conventional etching methods when preparing quantum devices. The device quality is demonstrated by observing Aharonov-Bohm (AB) oscillations with a period of h/e, h/2e, h/3e, and h/4e, witnessing a coherence length of many microns. The AB oscillations as well as the type of carriers (electrons or holes) are seamlessly tunable with gating. The coherence length longer than the ring perimeter and semiclassical trajectory of the carrier are established from the analysis of the temperature and magnetic field dependence of the oscillations. Our gate-defined ring geometry has the potential to evolve into a platform for exploring correlated quantum states such as superconductivity in interferometers in twisted bilayer graphene.

2.
Nat Commun ; 15(1): 390, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195747

RESUMO

Magic-angle twisted bilayer graphene can host a variety of gate-tunable correlated states - including superconducting and correlated insulator states. Recently, junction-based superconducting moiré devices have been introduced, enabling the study of the charge, spin and orbital nature of superconductivity, as well as the coherence of moiré electrons in magic-angle twisted bilayer graphene. Complementary fundamental coherence effects-in particular, the Little-Parks effect in a superconducting ring and the Aharonov-Bohm effect in a normally conducting ring - have not yet been reported in moiré devices. Here, we observe both phenomena in a single gate-defined ring device, where we can embed a superconducting or normally conducting ring in a correlated or band insulator. The Little-Parks effect is seen in the superconducting phase diagram as a function of density and magnetic field, confirming the effective charge of 2e. We also find that the coherence length of conducting moiré electrons exceeds several microns at 50 mK. In addition, we identify a regime characterized by h/e-periodic oscillations but with superconductor-like nonlinear transport.

3.
Nat Nanotechnol ; 17(11): 1159-1164, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36280761

RESUMO

Magic-angle twisted bilayer graphene (MATBG) hosts a number of correlated states of matter that can be tuned by electrostatic doping1-4. Transport5,6 and scanning-probe7-9 experiments have shown evidence for band, correlated and Chern insulators along with superconductivity. This variety of in situ tunable states has allowed for the realization of tunable Josephson junctions10-12. However, although phase-coherent phenomena have been measured10-12, no control of the phase difference of the superconducting condensates has been demonstrated so far. Here we build on previous gate-defined junction realizations and form a superconducting quantum interference device13 (SQUID) in MATBG, where the superconducting phase difference is controlled through the magnetic field. We observe magneto-oscillations of the critical current, demonstrating long-range coherence of superconducting charge carriers with an effective charge of 2e. We tune to both asymmetric and symmetric SQUID configurations by electrostatically controlling the critical currents through the junctions. This tunability allows us to study the inductances in the device, finding values of up to 2 µH. Furthermore, we directly probe the current-phase relation of one of the junctions of the device. Our results show that complex devices in MATBG can be realized and used to reveal the properties of the material. We envision our findings, together with the established history of applications SQUIDs have14-16, will foster the development of a wide range of devices such as phase-slip junctions17 or high kinetic inductance detectors18.

4.
Rev Sci Instrum ; 91(8): 085110, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32872958

RESUMO

Single electron sources have been studied as a device to establish an electric current standard for 30 years and recently as an on-demand coherent source for fermion quantum optics. In order to construct the single electron source on a GaAs/AlGaAs two-dimensional electron gas (2DEG), it is often necessary to fabricate a sub-micrometer wire by etching. We have established techniques to fabricate the wire made of the fragile 2DEG by combining photolithography and electron beam lithography with one-step photoresist coating, which enables us to etch fine and coarse structures simultaneously. It has been demonstrated that the fabricated single electron source pumps a fixed number of electrons per cycle with radio frequency. The fabrication technique improves the lithography process with lower risk of damage to the 2DEG.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA