RESUMO
Maternal immune activation (MIA) during prenatal development is an environmental risk factor for psychiatric disorders including schizophrenia (SZ). Converging lines of evidence from human and animal model studies suggest that elevated cytokine levels in the maternal and fetal compartments are an important indication of the mechanisms driving this association. However, there is variability in susceptibility to the psychiatric risk conferred by MIA, likely influenced by genetic factors. How MIA interacts with a genetic profile susceptible to SZ is challenging to test in animal models. To address this gap, we examined whether differential gene expression responses occur in forebrain-lineage neural progenitor cells (NPCs) derived from human induced pluripotent stem cells (hiPSC) generated from three individuals with a diagnosis of schizophrenia and three healthy controls. Following acute (24 h) treatment with either interferon-gamma (IFNγ; 25 ng/µl) or interleukin (IL)-1ß (10 ng/µl), we identified, by RNA sequencing, 3380 differentially expressed genes (DEGs) in the IFNγ-treated control lines (compared to untreated controls), and 1980 DEGs in IFNγ-treated SZ lines (compared to untreated SZ lines). Out of 4137 genes that responded significantly to IFNγ across all lines, 1223 were common to both SZ and control lines. The 2914 genes that appeared to respond differentially to IFNγ treatment in SZ lines were subjected to a further test of significance (multiple testing correction applied to the interaction effect between IFNγ treatment and SZ diagnosis), yielding 359 genes that passed the significance threshold. There were no differentially expressed genes in the IL-1ß-treatment conditions after Benjamini-Hochberg correction. Gene set enrichment analysis however showed that IL-1ß impacts immune function and neuronal differentiation. Overall, our data suggest that a) SZ NPCs show an attenuated transcriptional response to IFNγ treatment compared to controls; b) Due to low IL-1ß receptor expression in NPCs, NPC cultures appear to be less responsive to IL-1ß than IFNγ; and c) the genes differentially regulated in SZ lines - in the face of a cytokine challenge - are primarily associated with mitochondrial, "loss-of-function", pre- and post-synaptic gene sets. Our findings particularly highlight the role of early synaptic development in the association between maternal immune activation and schizophrenia risk.
Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Esquizofrenia , Animais , Citocinas/metabolismo , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/metabolismo , Gravidez , Prosencéfalo , Esquizofrenia/genética , Esquizofrenia/metabolismoRESUMO
Schizophrenia is a common, chronic and debilitating neuropsychiatric syndrome affecting tens of millions of individuals worldwide. While rare genetic variants play a role in the etiology of schizophrenia, most of the currently explained liability is within common variation, suggesting that variation predating the human diaspora out of Africa harbors a large fraction of the common variant attributable heritability. However, common variant association studies in schizophrenia have concentrated mainly on cohorts of European descent. We describe genome-wide association studies of 6152 cases and 3918 controls of admixed African ancestry, and of 1234 cases and 3090 controls of Latino ancestry, representing the largest such study in these populations to date. Combining results from the samples with African ancestry with summary statistics from the Psychiatric Genomics Consortium (PGC) study of schizophrenia yielded seven newly genome-wide significant loci, and we identified an additional eight loci by incorporating the results from samples with Latino ancestry. Leveraging population differences in patterns of linkage disequilibrium, we achieve improved fine-mapping resolution at 22 previously reported and 4 newly significant loci. Polygenic risk score profiling revealed improved prediction based on trans-ancestry meta-analysis results for admixed African (Nagelkerke's R2 = 0.032; liability R2 = 0.017; P < 10-52), Latino (Nagelkerke's R2 = 0.089; liability R2 = 0.021; P < 10-58), and European individuals (Nagelkerke's R2 = 0.089; liability R2 = 0.037; P < 10-113), further highlighting the advantages of incorporating data from diverse human populations.
Assuntos
População Negra/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Hispânico ou Latino/genética , Esquizofrenia/genética , Feminino , Loci Gênicos , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
Large-scale genome-wide association studies of schizophrenia have uncovered hundreds of associated loci but with extremely limited representation of African diaspora populations. We surveyed electronic health records of 200,000 individuals of African ancestry in the Million Veteran and All of Us Research Programs, and, coupled with genotype-level data from four case-control studies, realized a combined sample size of 13,012 affected and 54,266 unaffected persons. Three genome-wide significant signals - near PLXNA4, PMAIP1, and TRPA1 - are the first to be independently identified in populations of predominantly African ancestry. Joint analyses of African, European, and East Asian ancestries across 86,981 cases and 303,771 controls, yielded 376 distinct autosomal loci, which were refined to 708 putatively causal variants via multi-ancestry fine-mapping. Utilizing single-cell functional genomic data from human brain tissue and two complementary approaches, transcriptome-wide association studies and enhancer-promoter contact mapping, we identified a consensus set of 94 genes across ancestries and pinpointed the specific cell types in which they act. We identified reproducible associations of schizophrenia polygenic risk scores with schizophrenia diagnoses and a range of other mental and physical health problems. Our study addresses a longstanding gap in the generalizability of research findings for schizophrenia across ancestral populations, underlining shared biological underpinnings of schizophrenia across global populations in the presence of broadly divergent risk allele frequencies.
RESUMO
Associations between influenza infection and psychosis have been reported since the eighteenth century, with acute "psychoses of influenza" documented during multiple pandemics. In the late 20th century, reports of a season-of-birth effect in schizophrenia were supported by large-scale ecological and sero-epidemiological studies suggesting that maternal influenza infection increases the risk of psychosis in offspring. We examine the evidence for the association between influenza infection and schizophrenia risk, before reviewing possible mechanisms via which this risk may be conferred. Maternal immune activation models implicate placental dysfunction, disruption of cytokine networks, and subsequent microglial activation as potentially important pathogenic processes. More recent neuroimmunological advances focusing on neuronal autoimmunity following infection provide the basis for a model of infection-induced psychosis, potentially implicating autoimmunity to schizophrenia-relevant protein targets including the N-methyl-D-aspartate receptor. Finally, we outline areas for future research and relevant experimental approaches and consider whether the current evidence provides a basis for the rational development of strategies to prevent schizophrenia.
RESUMO
BACKGROUND: Psychosis is a condition influenced by an interaction of environmental and genetic factors. Gene expression studies can capture these interactions; however, studies are usually performed in patients who are in remission. This study uses blood of first episode psychosis patients, in order to characterise deregulated pathways associated with psychosis symptom dimensions. METHODS: Peripheral blood from 149 healthy controls and 131 first episode psychosis patients was profiled using Illumina HT-12 microarrays. A case/control differential expression analysis was performed, followed by correlation of gene expression with positive and negative syndrome scale (PANSS) scores. Enrichment analyses were performed on the associated gene lists. We test for pathway differences between first episode psychosis patients who qualify for a Schizophrenia diagnosis against those who do not. RESULTS: A total of 978 genes were differentially expressed and enriched for pathways associated to immune function and the mitochondria. Using PANSS scores we found that positive symptom severity was correlated with immune function, while negative symptoms correlated with mitochondrial pathways. CONCLUSIONS: Our results identified gene expression changes correlated with symptom severity and showed that key pathways are modulated by positive and negative symptom dimensions.
Assuntos
Transtornos Psicóticos/genética , Esquizofrenia/genética , Transcriptoma , Adolescente , Adulto , Transtornos Psicóticos Afetivos/genética , Transtornos Psicóticos Afetivos/psicologia , Transtorno Bipolar/genética , Transtorno Bipolar/psicologia , Estudos de Casos e Controles , Transtorno Depressivo/genética , Transtorno Depressivo/psicologia , Feminino , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Transtornos Psicóticos/psicologia , RNA/sangue , Psicologia do Esquizofrênico , Índice de Gravidade de Doença , Adulto JovemRESUMO
BACKGROUND: This work addresses the existing and emerging evidence of overlap within the environmental and genetic profiles of multiple sclerosis (MS) and schizophrenia. AIMS: To investigate whether a genetic risk factor for MS (rs703842), whose variation is indicative of vitamin D status in the disorder, could also be a determinant of vitamin D status in chronic psychosis patients. METHODS: A cohort of 224 chronic psychosis cases was phenotyped and biologically profiled. The relationship between rs703842 and physiological vitamin D status in the blood plasma was assessed by logistic regression. Deficiency was defined as a blood plasma concentration below 10 ng/µl. Potential environmental confounders of the vitamin D status were considered as part of the analysis. RESULTS: We report suggestive evidence of an association with vitamin D status in established psychosis (ß standardized=0.51, P=0.04). The logistic model fit significantly benefited from controlling for body mass index, depression and ethnicity (χ (2)=91.7; 2 degrees of freedom (df); P=1.2×10(20)). CONCLUSIONS: The results suggest that, in addition to lifestyle changes that accompany the onset of illness, vitamin D dysregulation in psychosis has a genetic component that links into MS. Further, comprehensive studies are needed to evaluate this prospect.
RESUMO
BACKGROUND: Transmissible Spongiform Encephalopathies (TSEs) are a group of progressive fatal neurodegenerative disorders, triggered by abnormal folding of the endogenous prion protein molecule. The encoding gene is a major biological factor influencing the length of the asymptomatic period after infection. It remains unclear the extent to which the variation between quantitative trait loci (QTLs) reported in mouse models is due to methodological differences between approaches or genuine differences between traits. With this in mind, our approach to identifying genetic factors has sought to extend the linkage mapping approach traditionally applied, to a series of additional traits, while minimising methodological variability between them. Our approach allows estimations of heritability to be derived, as well as predictions to be made about possible existence of genetic overlap between the various traits. METHODOLOGY/PRINCIPAL FINDINGS: Our data indicate a surprising degree of heritability (up to 60%). Correlations between traits are also identified. A series of QTLs on chromosomes 1, 2, 3, 4, 6, 11 and 18 accompany our heritability estimates. However, only a locus on chromosome 11 has a general effect across all 4 models explored. CONCLUSIONS/SIGNIFICANCE: We have achieved some success in detecting novel and pre-existing QTLs associated with incubation time. However, aside from the general effects described, the model-specific nature of the broader host genetic architecture has also been brought into clearer focus. This suggests that genetic overlap can only partially account for the general heritability of incubation time when factors, such as the nature of the TSE agent and the route of administration are considered. This point is highly relevant to vCJD (a potential threat to public health) where the route of primary importance is oral, while the QTLs being sought derive exclusively from studies of the ic route. Our results highlight the limitations of a single-model approach to QTL-mapping of TSEs.