Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Biosci Biotechnol Biochem ; 85(1): 85-91, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33577659

RESUMO

Sulfoglycolipid, SQAP, is a radiosensitizing agent that makes tumor cells more sensitive to radiation therapy. A previous study revealed that SQAP induced the degradation of hypoxia-inducible factor-1α (HIF-1α) and inhibited angiogenesis in a hepatoma model mouse. Herein, we examined the biological activities of SQAP against hepatocarcinoma cells under low oxygen conditions. Cell growth inhibition of SQAP under hypoxic conditions was significantly higher than that under normoxic conditions. In addition, SQAP was found to impair the expression of histone deacetylase (HDAC) under low oxygen conditions. Our present data suggested that SQAP induced the degradation of HIF-1α and then decreased the expression of HDAC1. Unlike known HDAC inhibitors, SQAP increased the acetylation level of histone in cells without inhibition of enzymatic activity of HDACs. Our data demonstrated hypoxia-specific unique properties of SQAP.


Assuntos
Morte Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicolipídeos/química , Glicolipídeos/farmacologia , Histona Desacetilase 1/metabolismo , Hipóxia Tumoral/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Histonas/metabolismo , Humanos
2.
J Virol ; 90(20): 9058-74, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27489280

RESUMO

UNLABELLED: Cell culture systems reproducing virus replication can serve as unique models for the discovery of novel bioactive molecules. Here, using a hepatitis C virus (HCV) cell culture system, we identified neoechinulin B (NeoB), a fungus-derived compound, as an inhibitor of the liver X receptor (LXR). NeoB was initially identified by chemical screening as a compound that impeded the production of infectious HCV. Genome-wide transcriptome analysis and reporter assays revealed that NeoB specifically inhibits LXR-mediated transcription. NeoB was also shown to interact directly with LXRs. Analysis of structural analogs suggested that the molecular interaction of NeoB with LXR correlated with the capacity to inactivate LXR-mediated transcription and to modulate lipid metabolism in hepatocytes. Our data strongly suggested that NeoB is a novel LXR antagonist. Analysis using NeoB as a bioprobe revealed that LXRs support HCV replication: LXR inactivation resulted in dispersion of double-membrane vesicles, putative viral replication sites. Indeed, cells treated with NeoB showed decreased replicative permissiveness for poliovirus, which also replicates in double-membrane vesicles, but not for dengue virus, which replicates via a distinct membrane compartment. Together, our data suggest that LXR-mediated transcription regulates the formation of virus-associated membrane compartments. Significantly, inhibition of LXRs by NeoB enhanced the activity of all known classes of anti-HCV agents, and NeoB showed especially strong synergy when combined with interferon or an HCV NS5A inhibitor. Thus, our chemical genetics analysis demonstrates the utility of the HCV cell culture system for identifying novel bioactive molecules and characterizing the virus-host interaction machinery. IMPORTANCE: Hepatitis C virus (HCV) is highly dependent on host factors for efficient replication. In the present study, we used an HCV cell culture system to screen an uncharacterized chemical library. Our results identified neoechinulin B (NeoB) as a novel inhibitor of the liver X receptor (LXR). NeoB inhibited the induction of LXR-regulated genes and altered lipid metabolism. Intriguingly, our results indicated that LXRs are critical to the process of HCV replication: LXR inactivation by NeoB disrupted double-membrane vesicles, putative sites of viral replication. Moreover, NeoB augmented the antiviral activity of all known classes of currently approved anti-HCV agents without increasing cytotoxicity. Thus, our strategy directly links the identification of novel bioactive compounds to basic virology and the development of new antiviral agents.


Assuntos
Alcaloides/metabolismo , Antivirais/metabolismo , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Fungos/química , Hepacivirus/efeitos dos fármacos , Receptores X do Fígado/antagonistas & inibidores , Piperazinas/metabolismo , Alcaloides/isolamento & purificação , Antivirais/isolamento & purificação , Técnicas de Cultura de Células , Linhagem Celular , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/fisiologia , Sinergismo Farmacológico , Hepacivirus/fisiologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Piperazinas/isolamento & purificação , Poliovirus/efeitos dos fármacos , Poliovirus/fisiologia , Ligação Proteica , Replicação Viral/efeitos dos fármacos
3.
Clin Lung Cancer ; 25(2): e87-e91, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38101984

RESUMO

For patients with stage I/IIA non-small-cell lung cancer (NSCLC), surgical resection is the standard treatment. However, some of these patients are not candidates for surgery or refuse a surgical option. Definitive stereotactic ablative radiotherapy (SABR) is a standard approach in these patients. Approximately 15% of patients undergoing SABR for localized NSCLC will experience a recurrence within 2 years. Furthermore, many of these patients are deemed appropriate for SABR without a tissue diagnosis, based on the likelihood of malignancy which can be calculated by validated models. A liquid biopsy, detecting ctDNA, would be useful in early detection of recurrences, and documenting a cancer diagnosis in patients without a biopsy. This is a multi-institutional study enrolling patients with suspected stage I/IIA NSCLC and a pretreatment likelihood of malignancy of ≥60% using the validated models for patients without a tissue diagnosis, in cohort 1 (n = 45). The second cohort will consist of biopsied patients (n = 30-60). SABR will be delivered as per risk-adapted protocol. Plasma will be collected for ctDNA analysis prior to the first fraction of SABR, 24 to 72 hours after first fraction, and at 3, 6, 9, 12, 18, and 24-months. The patients will be followed up with imaging at 3, 6, 9, 12, 18, and 24-months. The primary objective is to assess whether a cancer detection liquid biopsy platform can predict recurrence of NSCLC. The secondary objectives are to assess the impact of SABR on detection rates of ctDNA in patients undergoing SABR and to correlate ctDNA positivity and pretreatment probability of malignancy (NCT05921474).


Assuntos
Carcinoma Pulmonar de Células não Pequenas , DNA Tumoral Circulante , Neoplasias Pulmonares , Radiocirurgia , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Resultado do Tratamento , Estadiamento de Neoplasias , Radiocirurgia/métodos
4.
J Am Chem Soc ; 135(50): 18949-56, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24251365

RESUMO

The first total synthesis of MA026 and the identification of its candidate target protein for anti-hepatitis C virus activity are presented. MA026, a novel lipocyclodepsipeptide isolated from the fermentation broth of Pseudomonas sp. RtIB026, consists of a cyclodepsipeptide, a chain peptide, and an N-terminal (R)-3-hydroxydecanoic acid. The first subunit, side chain 2, was prepared by coupling fatty acid moiety 4 with tripeptide 5. The key macrocyclization of the decadepsipeptide at L-Leu(10)-D-Gln(11) provided the second subunit, cyclodepsipeptide 3. Late-stage condensation of the two key subunits and final deprotection afforded MA026. This convergent, flexible, solution-phase synthesis will be invaluable in generating MA026 derivatives for future structure-activity relationship studies. An infectious hepatitis C virus (HCV) cell culture assay revealed that MA026 suppresses HCV infection into host hepatocytes by inhibiting the entry process in a dose-dependent manner. Phage display screening followed by surface plasmon resonance (SPR) binding analyses identified claudin-1, an HCV entry receptor, as a candidate target protein of MA026.


Assuntos
Antivirais/síntese química , Antivirais/farmacologia , Depsipeptídeos/síntese química , Depsipeptídeos/farmacologia , Hepacivirus/efeitos dos fármacos , Fermentação
5.
Front Oncol ; 13: 1170513, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251939

RESUMO

Background: The detection of pancreatic ductal adenocarcinoma (PDAC) lesions at pre-cancerous or early-stages is critical to improving patient survival. We have developed a liquid biopsy test (ExoVita®) based on the measurement of protein biomarkers in cancer-derived exosomes. The high sensitivity and specificity of the test for early-stage PDAC has the potential to improve a patient's diagnostic journey in hopes to impact patient outcomes. Methods: Exosome isolation was performed using alternating current electric (ACE) field applied to the patient plasma sample. Following a wash to eliminate unbound particles, the exosomes were eluted from the cartridge. A downstream multiplex immunoassay was performed to measure proteins of interest on the exosomes, and a proprietary algorithm provided a score for probability of PDAC. Results: We describe the case of a 60-year-old healthy non-Hispanic white male with acute pancreatitis who underwent numerous invasive diagnostic procedures that failed to detect radiographic evidence of pancreatic lesions. Following the results of our exosome-based liquid biopsy test showing "High Likelihood of PDAC", in addition to KRAS and TP53 mutations, the patient decided to undergo a robotic pancreaticoduodenectomy (Whipple) procedure. Surgical pathology confirmed the diagnosis of high-grade intraductal papillary mucinous neoplasm (IPMN), which was consistent with the results of our ExoVita® test. The patient's post-operative course was unremarkable. At five-month follow-up, the patient continued to recover well without complications, in addition to a repeat ExoVita test which demonstrated "Low Likelihood of PDAC". Conclusion: This case report highlights how a novel liquid biopsy diagnostic test based on the detection of exosome protein biomarkers allowed early diagnosis of a high-grade precancerous lesion for PDAC and improved patient outcome.

6.
Leukemia ; 36(4): 946-955, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35022500

RESUMO

The Switch/Sugar Non-Fermenting (SWI/SNF) nucleosome remodeling complexes play important roles in normal development and in the development of various cancers. Core subunits of the SWI/SNF complexes have been shown to have oncogenic roles in acute myeloid leukemia. However, the roles of the unique targeting subunits, including that of Arid2 and Arid1b, in AML leukemogenesis are not well understood. Here, we used conditional knockout mouse models to elucidate their role in MLL-AF9 leukemogenesis. We uncovered that Arid2 has dual roles; enhancing leukemogenesis when deleted during leukemia initiation and yet is required during leukemia maintenance. Whereas, deleting Arid1b in either phase promotes leukemogenesis. Our integrated analyses of transcriptomics and genomic binding data showed that, globally, Arid2 and Arid1b regulate largely distinct sets of genes at different disease stages, respectively, and in comparison, to each other. Amongst the most highly dysregulated transcription factors upon their loss, Arid2 and Arid1b converged on the regulation of Etv4/Etv5, albeit in an opposing manner while also regulating distinct TFs including Gata2,Tcf4, Six4, Irf4 and Hmgn3. Our data demonstrate the differential roles of SWI/SNF subunits in AML leukemogenesis and emphasize that cellular context and disease stage are key in determining their functions during this process.


Assuntos
Leucemia , Fatores de Transcrição , Animais , Carcinogênese/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Leucemia/genética , Camundongos , Camundongos Knockout , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Exp Hematol ; 94: 37-46, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33346030

RESUMO

The switch/sugar nonfermenting (SWI/SNF) family of chromatin remodeling complexes have been implicated in normal hematopoiesis. The ARID2 protein is a component of the polybromo-associated BAF (PBAF), one of the two main SWI/SNF complexes. In the current study, we used a conditional Arid2 knockout mouse model to determine its role in normal hematopoiesis. We found that the loss of Arid2 has no discernable effects on steady-state hematopoiesis, with the exception of a modest effect on erythropoiesis. On bone marrow transplantation, however, the loss of Arid2 affects HSC differentiation in a cell-autonomous manner, resulting in significant decreases in the ability to reconstitute the lymphoid lineage. Gene expression analysis of Arid2 knockout cells revealed enrichment of myeloid-biased multipotent progenitor (MPP) cell signatures, while the lymphoid-biased MPPs are enriched in the wild type, consistent with the observed phenotype. Moreover, Arid2 knockout cells revealed enrichment of inflammatory pathways with upregulation of TLR receptors, as well as downstream signaling cascade genes. Furthermore, under lymphocyte-biased growth conditions in vitro, Arid2 null bone marrow cells have significantly impaired proliferation, which decreased further on lipopolysaccharide stimulation. Overall, these data suggest that the loss of Arid2 impairs HSC differentiation ability, and this effect may be mediated through upregulation of inflammatory pathways.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas/citologia , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Deleção de Genes , Células-Tronco Hematopoéticas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição/genética
8.
Blood Adv ; 3(9): 1499-1511, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31076406

RESUMO

JMJD1C, a member of the lysine demethylase 3 family, is aberrantly expressed in mixed lineage leukemia (MLL) gene-rearranged (MLLr) leukemias. We have shown previously that JMJD1C is required for self-renewal of acute myeloid leukemia (AML) leukemia stem cells (LSCs) but not normal hematopoietic stem cells. However, the domains within JMJD1C that promote LSC self-renewal are unknown. Here, we used clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) negative-selection screening and identified a requirement for the catalytic Jumonji (JmjC) domain and zinc finger domain for leukemia cell survival in vitro and in vivo. In addition, we found that histone H3 lysine 36 methylation (H3K36me) is a marker for JMJD1C activity at gene loci. Moreover, we performed single cell transcriptome analysis of mouse leukemia cells harboring a single guide RNA (sgRNA) against the JmjC domain and identified increased activation of RAS/MAPK and the JAK-STAT pathway in cells harboring the JmjC sgRNA. We discovered that upregulation of interleukin 3 (IL-3) receptor genes mediates increased activation of IL-3 signaling upon JMJD1C loss or mutation. Along these lines, we observed resistance to JMJD1C loss in MLLr AML bearing activating RAS mutations, suggesting that RAS pathway activation confers resistance to JMJD1C loss. Overall, we discovered the functional importance of the JMJD1C JmjC domain in AML leukemogenesis and a novel interplay between JMJD1C and the IL-3 signaling pathway as a potential resistance mechanism to targeting JMJD1C catalytic activity.


Assuntos
Histona-Lisina N-Metiltransferase/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Leucemia Mieloide Aguda/patologia , Proteína de Leucina Linfoide-Mieloide/genética , Oxirredutases N-Desmetilantes/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Edição de Genes , Histonas/metabolismo , Humanos , Interleucina-3/metabolismo , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/genética , Leucemia Mieloide Aguda/genética , Camundongos , Camundongos Endogâmicos C57BL , Oxirredutases N-Desmetilantes/química , Oxirredutases N-Desmetilantes/genética , Domínios Proteicos , RNA Guia de Cinetoplastídeos/metabolismo , Transdução de Sinais , Transplante Heterólogo , Dedos de Zinco/genética
9.
Sci Rep ; 5: 15136, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26456697

RESUMO

SQAP is a novel and promising anticancer agent that was obtained by structural modifications from a natural compound. SQAP inhibits angiogenesis in vivo resulting in increased hypoxia and reduced tumor volume. In this study, the mechanism by which SQAP modifies the tumor microenvironment was revealed through the application of a T7 phage display screening. This approach identified five SQAP-binding proteins including sterol carrier protein 2, multifunctional enzyme type 2, proteasomal ubiquitin receptor, UV excision repair protein and focal adhesion kinase (FAK). All the interactions were confirmed by surface plasmon resonance analysis. Since FAK plays an important role in cell turnover and angiogenesis, the influence of SQAP on FAK was the principal goal of this study. SQAP decreased FAK phosphorylation and cell migration in human umbilical vein endothelial cells and A549 cancer cells. These findings suggest that inhibition of FAK phosphorylation works as the mechanism for the anti-angiogenesis activity of SQAP.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Pequenas/tratamento farmacológico , Quinase 1 de Adesão Focal/antagonistas & inibidores , Glicolipídeos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Sequência de Aminoácidos , Animais , Antineoplásicos/síntese química , Sítios de Ligação , Carcinoma de Células Pequenas/enzimologia , Carcinoma de Células Pequenas/genética , Carcinoma de Células Pequenas/patologia , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Quinase 1 de Adesão Focal/química , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Glicolipídeos/síntese química , Células Endoteliais da Veia Umbilical Humana , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Nus , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Biblioteca de Peptídeos , Proteína Multifuncional do Peroxissomo-2/química , Proteína Multifuncional do Peroxissomo-2/genética , Proteína Multifuncional do Peroxissomo-2/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Mol Ther Oncolytics ; 2: 15020, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27119112

RESUMO

"Angiogenic switch off" is one of the ideal therapeutic concepts in the treatment of cancer. However, the specific molecules which can induce "angiogenic switch off" in tumor have not been identified yet. In this study, we focused on von Hippel-Lindau protein (pVHL) in hepatocellular carcinoma (HCC) and investigated the effects of sulfoquinovosyl-acylpropanediol (SQAP), a novel synthetic sulfoglycolipid, for HCC. We examined mutation ratio of VHL gene in HCC using 30 HCC samples and we treated the HCC-implanted mice with SQAP. Thirty clinical samples showed no VHL genetic mutation in HCC. SQAP significantly inhibited tumor growth by inhibiting angiogenesis in a hepatoma mouse model. SQAP induced tumor "angiogenic switch off" by decreasing hypoxia-inducible factor (HIF)-1, 2α protein via pVHL upregulation. pVHL upregulation decreased HIFα protein levels through different multiple mechanisms: (i) increasing pVHL-dependent HIFα protein degradation; (ii) decreasing HIFα synthesis with decrease of NF-κB expression; and (iii) decrease of tumor hypoxia by vascular normalization. We confirmed these antitumor effects of SQAP by the loss-of-function experiments. We found that SQAP directly bound to and inhibited transglutaminase 2. This study provides evidence that upregulation of tumor pVHL is a promising target, which can induce "angiogenic switch off" in HCC.

11.
Assay Drug Dev Technol ; 11(3): 206-15, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23514038

RESUMO

In small-molecule/protein interaction studies, technical difficulties such as low solubility of small molecules or low abundance of protein samples often restrict the progress of research. Here, we describe a quartz-crystal microbalance (QCM) biosensor-based T7 phage display in combination use with a receptor-ligand contacts (RELIC) bioinformatics server for application in a plant Brz2001/DWARF4 system. Brz2001 is a brassinosteroid biosynthesis inhibitor in the less-soluble triazole series of compounds that targets DWARF4, a cytochrome P450 (Cyp450) monooxygenase containing heme and iron. Using a Brz2001 derivative that has higher solubility in 70% EtOH and forms a self-assembled monolayer on gold electrode, we selected 34 Brz2001-recognizing peptides from a 15-mer T7 phage-displayed random peptide library using a total of four sets of one-cycle biopanning. The RELIC/MOTIF program revealed continuous and discontinuous short motifs conserved within the 34 Brz2001-selected 15-mer peptide sequences, indicating the increase of information content for Brz2001 recognition. Furthermore, an analysis of similarity between the 34 peptides and the amino-acid sequence of DWARF4 using the RELIC/MATCH program generated a similarity plot and a cluster diagram of the amino-acid sequence. Both of these data highlighted an internally located disordered portion of a catalytic site on DWARF4, indicating that this portion is essential for Brz2001 recognition. A similar trend was also noted by an analysis using another 26 Brz2001-selected peptides, and not observed using the 27 gold electrode-recognizing control peptides, demonstrating the reproducibility and specificity of this method. Thus, this affinity-based strategy enables high-throughput detection of the small-molecule-recognizing portion on the target protein, which overcomes technical difficulties such as sample solubility or preparation that occur when conventional methods are used.


Assuntos
Proteínas de Arabidopsis/metabolismo , Bacteriófago T7/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Oxigenases de Função Mista/metabolismo , Triazóis/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/efeitos dos fármacos , Sítios de Ligação , Técnicas Biossensoriais , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , DNA Viral/genética , Indicadores e Reagentes , Dados de Sequência Molecular , Biblioteca de Peptídeos , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Software , Ensaio de Placa Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA