Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Pharmacol Exp Ther ; 380(1): 54-62, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34697230

RESUMO

Colorectal cancer is the third most commonly occurring cancer in men and the second in women. The global burden of colorectal cancer is projected to increase to over 2 million new cases with over 1 million deaths within the next 10 years, and there is a great need for new compounds with novel mechanisms of action. Our group has developed protein kinase C (PKC)-modulating isophthalic acid derivatives that induce cytotoxicity toward human cervical and prostate cancer cell lines. In this study, we investigated the effects of 5-(hydroxymethyl)isophthalate 1a3 (HMI-1a3) on colorectal cancer cell lines (Caco-2, Colo205, and HT29). HMI-1a3 inhibited cell proliferation, decreased cell viability, and induced an apoptotic response in all studied cell lines. These effects, however, were independent of PKC. Using serine/threonine kinome profiling and pharmacological kinase inhibitors, we identified activation of the cAMP/PKA pathway as a new mechanism of action for HMI-1a3-induced anticancer activity in colorectal cancer cell lines. Our current results strengthen the hypothesis for HMI-1a3 as a potential anticancer agent against various malignancies. SIGNIFICANCE STATEMENT: Colorectal cancer (CRC) is a common solid organ malignancy. This study demonstrates that the protein kinase C (PKC)-C1 domain-targeted isophthalatic acid derivative 5-(hydroxymethyl)isophthalate 1a3 (HMI-1a3) has anticancer activity on CRC cell lines independently of PKC. We identified PKA activation as a mechanism of HMI-1a3-induced anticancer effects. The results reveal a new anticancer mechanism of action for the partial PKC agonist HMI-1a3 and thus provide new insights for the development of PKC and PKA modulators for cancer therapy.


Assuntos
Neoplasias Colorretais/metabolismo , Ácidos Ftálicos/farmacologia , Apoptose/efeitos dos fármacos , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células HT29 , Humanos
2.
Int J Mol Sci ; 22(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33579026

RESUMO

Prolyl oligopeptidase (PREP) is a serine protease that binds to alpha-synuclein (aSyn) and induces its aggregation. PREP inhibitors have been shown to have beneficial effects in Parkinson's disease models by enhancing the clearance of aSyn aggregates and modulating striatal dopamine. Additionally, we have shown that PREP regulates phosphorylation and internalization of dopamine transporter (DAT) in mice. In this study, we clarified the mechanism behind this by using HEK-293 and PREP knock-out HEK-293 cells with DAT transfection. We tested the effects of PREP, PREP inhibition, and alpha-synuclein on PREP-related DAT regulation by using Western blot analysis and a dopamine uptake assay, and characterized the impact of PREP on protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) by using PKC assay and Western blot, respectively, as these kinases regulate DAT phosphorylation. Our results confirmed our previous findings that a lack of PREP can increase phosphorylation and internalization of DAT and decrease uptake of dopamine. PREP inhibition had a variable impact on phosphorylation of ERK dependent on the metabolic state of cells, but did not have an effect on phosphorylation or function of DAT. PREP modifications did not affect PKC activity either. Additionally, a lack of PREP elevated a DAT oligomerization that is associated with intracellular trafficking of DAT. Our results suggest that PREP-mediated phosphorylation, oligomerization, and internalization of DAT is not dependent on PKC or ERK.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Prolil Oligopeptidases/metabolismo , Proteína Quinase C/metabolismo , Células HEK293 , Humanos , Fosforilação , Multimerização Proteica
3.
Pharmacol Res ; 151: 104558, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31759088

RESUMO

Prolyl oligopeptidase (PREP) is a serine protease that has been studied particularly in the context of neurodegenerative diseases for decades but its physiological function has remained unclear. We have previously found that PREP negatively regulates beclin1-mediated macroautophagy (autophagy), and that PREP inhibition by a small-molecule inhibitor induces clearance of protein aggregates in Parkinson's disease models. Since autophagy induction has been suggested as a potential therapy for several diseases, we wanted to further characterize how PREP regulates autophagy. We measured the levels of various kinases and proteins regulating beclin1-autophagy in HEK-293 and SH-SY5Y cell cultures after PREP inhibition, PREP deletion, and PREP overexpression and restoration, and verified the results in vivo by using PREP knock-out and wild-type mouse tissue where PREP was restored or overexpressed, respectively. We found that PREP regulates autophagy by interacting with protein phosphatase 2A (PP2A) and its endogenous inhibitor, protein phosphatase methylesterase 1 (PME1), and activator (protein phosphatase 2 phosphatase activator, PTPA), thus adjusting its activity and the levels of PP2A in the intracellular pool. PREP inhibition and deletion increased PP2A activity, leading to activation of death-associated protein kinase 1 (DAPK1), beclin1 phosphorylation and induced autophagy while PREP overexpression reduced this. Lowered activity of PP2A is connected to several neurodegenerative disorders and cancers, and PP2A activators would have enormous potential as drug therapy but development of such compounds has been a challenge. The concept of PREP inhibition has been proved safe, and therefore, our study supports the further development of PREP inhibitors as PP2A activators.


Assuntos
Autofagia , Deleção de Genes , Prolil Oligopeptidases/antagonistas & inibidores , Prolil Oligopeptidases/genética , Proteína Fosfatase 2/metabolismo , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Prolil Oligopeptidases/metabolismo
4.
Biochem Biophys Res Commun ; 445(2): 486-90, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24530395

RESUMO

Human OX1 orexin receptors have been shown to homodimerize and they have also been suggested to heterodimerize with CB1 cannabinoid receptors. The latter has been suggested to be important for orexin receptor responses and trafficking. In this study, we wanted to assess the ability of the other combinations of receptors to also form similar complexes. Vectors for expression of human OX1, OX2 and CB1 receptors, C-terminally fused with either Renilla luciferase or GFP(2) green fluorescent protein variant, were generated. The constructs were transiently expressed in Chinese hamster ovary cells, and constitutive dimerization between the receptors was assessed by bioluminescence energy transfer (BRET). Orexin receptor subtypes readily formed homo- and hetero(di)mers, as suggested by significant BRET signals. CB1 receptors formed homodimers, and they also heterodimerized with both orexin receptors. Interestingly, BRET efficiency was higher for homodimers than for almost all heterodimers. This is likely to be due to the geometry of the interaction; the putatively symmetric dimers may place the C-termini in a more suitable orientation in homomers. Fusion of luciferase to an orexin receptor and GFP(2) to CB1 produced more effective BRET than the opposite fusions, also suggesting differences in geometry. Similar was seen for the OX1-OX2 interaction. In conclusion, orexin receptors have a significant propensity to make homo- and heterodi-/oligomeric complexes. However, it is unclear whether this affects their signaling. As orexin receptors efficiently signal via endocannabinoid production to CB1 receptors, dimerization could be an effective way of forming signal complexes with optimal cannabinoid concentrations available for cannabinoid receptors.


Assuntos
Receptores de Orexina/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Medições Luminescentes , Receptores de Orexina/química , Multimerização Proteica , Receptor CB1 de Canabinoide/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
5.
Mol Pharmacol ; 83(3): 621-32, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23233488

RESUMO

It has been proposed that OX(1) orexin receptors and CB(1) cannabinoid receptors can form heteromeric complexes, which affect the trafficking of OX(1) receptors and potentiate OX(1) receptor signaling to extracellular signal-regulated kinase (ERK). We have recently shown that OX(1) receptor activity releases high levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG), suggesting an alternative route for OX(1)-CB(1) receptor interaction in signaling, for instance, in retrograde synaptic transmission. In the current study, we set out to investigate this possibility utilizing recombinant Chinese hamster ovary K1 cells. 2-AG released from OX(1) receptor-expressing cells acted as a potent paracrine messenger stimulating ERK activity in neighboring CB(1) receptor-expressing cells. When OX(1) and CB(1) receptors were expressed in the same cells, OX(1) stimulation-induced ERK phosphorylation and activity were strongly potentiated. The potentiation but not the OX(1) response as such was fully abolished by specific inhibition of CB(1) receptors or the enzyme responsible for 2-AG generation, diacylglycerol lipase (DAGL). Although the results do not exclude the previously proposed OX(1)-CB(1) heteromerization, they nevertheless unequivocally identify DAGL-dependent 2-AG generation as the pivotal determinant of the OX(1)-CB(1) synergism and thus suggest a functional rather than a molecular interaction of OX(1) and CB(1) receptors.


Assuntos
Endocanabinoides/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Comunicação Autócrina , Células CHO , Cricetinae , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glicerídeos/metabolismo , Humanos , Lipase Lipoproteica/antagonistas & inibidores , Receptores de Orexina , Fosforilação/fisiologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor Muscarínico M1/metabolismo , Transdução de Sinais
6.
J Med Chem ; 66(11): 7475-7496, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37248563

RESUMO

Prolyl oligopeptidase (PREP) is a widely distributed serine protease in the human body cleaving proline-containing peptides; however, recent studies suggest that its effects on pathogenic processes underlying neurodegeneration are derived from direct protein-protein interactions (PPIs) and not from its regulation of certain neuropeptide levels. We discovered novel nonpeptidic oxazole-based PREP inhibitors, which deviate from the known structure-activity relationship for PREP inhibitors. These new compounds are effective modulators of the PPIs of PREP, reducing α-synuclein (αSyn) dimerization and enhancing protein phosphatase 2A activity in a concentration-response manner, as well as reducing reactive oxygen species production. From the best performing oxazoles, HUP-55 was selected for in vivo studies. Its brain penetration was evaluated, and it was tested in αSyn virus vector-based and αSyn transgenic mouse models of Parkinson's disease, where it restored motor impairment and reduced levels of oligomerized αSyn in the striatum and substantia nigra.


Assuntos
Doença de Parkinson , Prolil Oligopeptidases , Animais , Humanos , Camundongos , alfa-Sinucleína/metabolismo , Ligantes , Camundongos Transgênicos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Serina Endopeptidases/metabolismo , Oxazóis/química , Oxazóis/farmacologia
7.
Sci Transl Med ; 15(691): eabq2915, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37043557

RESUMO

Tauopathies are neurodegenerative diseases that are characterized by accumulation of hyperphosphorylated tau protein, higher-order aggregates, and tau filaments. Protein phosphatase 2A (PP2A) is a major tau dephosphorylating phosphatase, and a decrease in its activity has been demonstrated in tauopathies, including Alzheimer's disease. Prolyl oligopeptidase is a serine protease that is associated with neurodegeneration, and its inhibition normalizes PP2A activity without toxicity under pathological conditions. Here, we assessed whether prolyl oligopeptidase inhibition could protect against tau-mediated toxicity in cellular models in vitro and in the PS19 transgenic mouse model of tauopathy carrying the human tau-P301S mutation. We show that inhibition of prolyl oligopeptidase with the inhibitor KYP-2047 reduced tau aggregation in tau-transfected HEK-293 cells and N2A cells as well as in human iPSC-derived neurons carrying either the P301L or tau-A152T mutation. Treatment with KYP-2047 resulted in increased PP2A activity and activation of autophagic flux in HEK-293 cells and N2A cells and in patient-derived iNeurons, as indicated by changes in autophagosome and autophagy receptor markers; this contributed to clearance of insoluble tau. Furthermore, treatment of PS19 transgenic mice for 1 month with KYP-2047 reduced tau burden in the brain and cerebrospinal fluid and slowed cognitive decline according to several behavioral tests. In addition, a reduction in an oxidative stress marker was seen in mouse brains after KYP-2047 treatment. This study suggests that inhibition of prolyl oligopeptidase could help to ameliorate tau-dependent neurodegeneration.


Assuntos
Prolil Oligopeptidases , Tauopatias , Camundongos , Humanos , Animais , Células HEK293 , Tauopatias/metabolismo , Proteínas tau/metabolismo , Camundongos Transgênicos , Serina Endopeptidases/metabolismo , Inibidores Enzimáticos , Modelos Animais de Doenças
8.
Mol Pharmacol ; 82(2): 156-67, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22550093

RESUMO

We showed previously that OX(1) orexin receptor stimulation produced a strong (3)H overflow response from [(3)H]arachidonic acid (AA)-labeled cells. Here we addressed this issue with a novel set of tools and methods, to distinguish the enzyme pathways responsible for this response. CHO-K1 cells heterologously expressing human OX(1) receptors were used as a model system. By using selective pharmacological inhibitors, we showed that, in orexin-A-stimulated cells, the AA-derived radioactivity was released as two distinct components, i.e., free AA and the endocannabinoid 2-arachidonoyl glycerol (2-AG). Two orexin-activated enzymatic cascades are responsible for this response: cytosolic phospholipase A(2) (cPLA(2)) and diacylglycerol lipase; the former cascade is responsible for part of the AA release, whereas the latter is responsible for all of the 2-AG release and part of the AA release. Essentially only diacylglycerol released by phospholipase C but not by phospholipase D was implicated as a substrate for 2-AG production, although both phospholipases were strongly activated. The 2-AG released acted as a potent paracrine messenger through cannabinoid CB(1) receptors in an artificial cell-cell communication assay that was developed. The cPLA(2) cascade, in contrast, was involved in the activation of orexin receptor-operated Ca(2+) influx. 2-AG was also released upon OX(1) receptor stimulation in recombinant HEK-293 and neuro-2a cells. The results directly show, for the first time, that orexin receptors are able to generate potent endocannabinoid signals in addition to arachidonic acid signals, which may explain the proposed orexin-cannabinoid interactions (e.g., in neurons).


Assuntos
Ácido Araquidônico/metabolismo , Moduladores de Receptores de Canabinoides/metabolismo , Endocanabinoides , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Neuropeptídeos/fisiologia , Transdução de Sinais/fisiologia , Animais , Benzoxazóis/farmacologia , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Naftiridinas , Receptores de Orexina , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores de Neuropeptídeos/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Ureia/análogos & derivados , Ureia/farmacologia
9.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1867(11): 159219, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35981704

RESUMO

The endoplasmic reticulum (ER) is an organelle that performs several key functions such as protein synthesis and folding, lipid metabolism and calcium homeostasis. When these functions are disrupted, such as upon protein misfolding, ER stress occurs. ER stress can trigger adaptive responses to restore proper functioning such as activation of the unfolded protein response (UPR). In certain cells, the free fatty acid palmitate has been shown to induce the UPR. Here, we examined the effects of palmitate on UPR gene expression in a human neuronal cell line and compared it with thapsigargin, a known depletor of ER calcium and trigger of the UPR. We used a Gaussia luciferase-based reporter to assess how palmitate treatment affects ER proteostasis and calcium homeostasis in the cells. We also investigated how ER calcium depletion by thapsigargin affects lipid membrane composition by performing mass spectrometry on subcellular fractions and compared this to palmitate. Surprisingly, palmitate treatment did not activate UPR despite prominent changes to membrane phospholipids. Conversely, thapsigargin induced a strong UPR, but did not significantly change the membrane lipid composition in subcellular fractions. In summary, our data demonstrate that changes in membrane lipid composition and disturbances in ER calcium homeostasis have a minimal influence on each other in neuronal cells. These data provide new insight into the adaptive interplay of lipid homeostasis and proteostasis in the cell.


Assuntos
Palmitatos , Proteostase , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Lipídeos de Membrana/metabolismo , Palmitatos/metabolismo , Palmitatos/farmacologia , Tapsigargina/metabolismo , Tapsigargina/farmacologia
10.
Biomed Pharmacother ; 131: 110788, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33152946

RESUMO

Growing evidence emphasizes insufficient clearance of pathological alpha-synuclein (αSYN) aggregates in the progression of Parkinson's disease (PD). Consequently, cellular degradation pathways represent a potential therapeutic target. Prolyl oligopeptidase (PREP) is highly expressed in the brain and has been suggested to increase αSYN aggregation and negatively regulate the autophagy pathway. Inhibition of PREP with a small molecule inhibitor, KYP-2407, stimulates autophagy and reduces the oligomeric species of αSYN aggregates in PD mouse models. However, whether PREP inhibition has any effects on intracellular αSYN fibrils has not been studied before. In this study, the effect of KYP2407 on αSYN preformed fibrils (PFFs) was tested in SH-SY5Y cells and human astrocytes. Immunostaining analysis revealed that both cell types accumulated αSYN PFFs intracellularly but KYP-2047 decreased intracellular αSYN deposits only in SH-SY5Y cells, as astrocytes did not show any PREP activity. Western blot analysis confirmed the reduction of high molecular weight αSYN species in SH-SY5Y cell lysates, and secretion of αSYN from SH-SY5Y cells also decreased in the presence of KYP-2407. Accumulation of αSYN inside the SH-SY5Y cells resulted in an increase of the auto-lysosomal proteins p62 and LC3BII, as well as calpain 1 and 2, which have been shown to be associated with PD pathology. Notably, treatment with KYP-2407 significantly reduced p62 and LC3BII levels, indicating an increased autophagic flux, and calpain 1 and 2 levels returned to normal in the presence of KYP-2407. Our findings indicate that PREP inhibition can potentially be used as therapy to reduce the insoluble intracellular αSYN aggregates.


Assuntos
Neurônios/efeitos dos fármacos , Prolina/análogos & derivados , Prolil Oligopeptidases/antagonistas & inibidores , alfa-Sinucleína/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , Progressão da Doença , Humanos , Neurônios/patologia , Doença de Parkinson/fisiopatologia , Prolina/farmacologia , Inibidores de Serina Proteinase/farmacologia
11.
ACS Med Chem Lett ; 11(5): 671-677, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32435369

RESUMO

Targeting cytotoxic 4ß-phorbol esters toward cancer tissue was attempted by conjugating a 4ß-pborbol derivative with substrates for the proteases prostate-specific antigen (PSA) and prostate-specific membrane antigen (PSMA) expressed in cancer tissue. The hydrophilic peptide moiety was hypothesized to prevent penetration of the prodrugs into cells and prevent interaction with PKC. Cleavage of the peptide in cancer tumors was envisioned to release lipophilic cytotoxins, which subsequently penetrate into cancer cells. The 4ß-phorbol esters were prepared from 4ß-phorbol isolated from Croton tiglium seeds, while the peptides were prepared by solid-phase synthesis. Cellular assays revealed activation of PKC by the prodrugs and efficient killing of both peptidase positive as well as peptidase negative cells. Consequently no selectivity for enzyme expressing cells was found.

12.
Biochem Pharmacol ; 161: 113-120, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30660495

RESUMO

Changes in prolyl oligopeptidase (PREP) expression levels, protein distribution, and activity correlate with aging and are reported in many neurodegenerative conditions. Together with decreased neuropeptide levels observed in aging and neurodegeneration, and PREP's ability to cleave only small peptides, PREP was identified as a druggable target. Known PREP non-enzymatic functions were disregarded or attributed to PREP enzymatic activity, and several potent small molecule PREP inhibitors were developed during early stages of PREP research. These showed a lot of potential but with variable results in experimental memory models, however, the initial excitement was short-lived and all of the clinical trials were discontinued in either Phase I or II clinical trials for unknown reasons. Recently, PREP's ability to form protein-protein interactions, alter cell proliferation and autophagy has gained more attention than earlier recognized catalytical activity. Of new findings, particularly the aggregation of alpha-synuclein (aSyn) that is seen in the presence of PREP is especially interesting because PREP inhibitors are capable of altering aSyn-PREP interaction in a manner that reduces the aSyn dimerization process. Therefore, it is possible that PREP inhibitors that are altering interactions could have different characteristics than those aimed for strong inhibition of catalytic activity. Moreover, PREP co-localization with aSyn, tau, and amyloid-beta hints to PREP's possible role not only in the synucleinopathies but in other neurodegenerative diseases as well. This commentary will focus on less well-acknowledged non-enzymatic functions of PREP that may provide a better approach for the development of PREP inhibitors for the treatment of neurodegenerative disorders.


Assuntos
Autofagia/efeitos dos fármacos , Inibidores Enzimáticos/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/enzimologia , Serina Endopeptidases/metabolismo , Animais , Autofagia/fisiologia , Inibidores Enzimáticos/farmacologia , Humanos , Prolil Oligopeptidases , alfa-Sinucleína/antagonistas & inibidores , alfa-Sinucleína/metabolismo
13.
FEBS Open Bio ; 8(5): 817-828, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29744295

RESUMO

Prostate cancer is one of the most common cancers in men. Although it has a relatively high 5-year survival rate, development of resistance to standard androgen-deprivation therapy is a significant clinical problem. Therefore, novel therapeutic strategies are urgently needed. The protein kinase C (PKC) family is a putative prostate cancer drug target, but so far no PKC-targeting drugs are available for clinical use. By contrast to the standard approach of developing PKC inhibitors, we have developed isophthalate derivatives as PKC agonists. In this study, we have characterized the effects of the most potent isophthalate, 5-(hydroxymethyl)isophthalate 1a3 (HMI-1a3), on three prostate cancer cell lines (LNCaP, DU145, and PC3) using both 2D and 3D cell culture models. In 2D cell culture, HMI-1a3 reduced cell viability or proliferation in all cell lines as determined by the metabolic activity of the cells (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay) and thymidine incorporation. However, the mechanism of action in LNCaP cells was different to that in DU145 or PC3 cells. In LNCaP cells, HMI-1a3 induced a PKC-dependent activation of caspase 3/7, indicating an apoptotic response, whereas in DU145 and PC3 cells, it induced senescence, which was independent of PKC. This was observed as typical senescent morphology, increased ß-galactosidase activity, and upregulation of the senescence marker p21 and downregulation of E2F transcription factor 1. Using a multicellular spheroid model, we further showed that HMI-1a3 affects the growth of LNCaP and DU145 cells in a 3D culture, emphasizing its potential as a lead compound for cancer drug development.

14.
PLoS One ; 13(4): e0195668, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29641588

RESUMO

Protein kinase C (PKC) isoforms play a pivotal role in the regulation of numerous cellular functions, making them extensively studied and highly attractive drug targets. Utilizing the crystal structure of the PKCδ C1B domain, we have developed hydrophobic isophthalic acid derivatives that modify PKC functions by binding to the C1 domain of the enzyme. In the present study, we aimed to improve the drug-like properties of the isophthalic acid derivatives by increasing their solubility and enhancing the binding affinity. Here we describe the design and synthesis of a series of multisubstituted pyrimidines as analogs of C1 domain-targeted isophthalates and characterize their binding affinities to the PKCα isoform. In contrast to our computational predictions, the scaffold hopping from phenyl to pyrimidine core diminished the binding affinity. Although the novel pyrimidines did not establish improved binding affinity for PKCα compared to our previous isophthalic acid derivatives, the present results provide useful structure-activity relationship data for further development of ligands targeted to the C1 domain of PKC.


Assuntos
Ácidos Ftálicos/química , Proteína Quinase C/química , Proteína Quinase C/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo , Desenho de Fármacos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Relação Estrutura-Atividade
15.
Basic Clin Pharmacol Toxicol ; 119(2): 149-60, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27001133

RESUMO

Alzheimer's disease (AD), the most common cause of dementia, is an irreversible and progressive neurodegenerative disorder. It affects predominantly brain areas that are critical for memory and learning and is characterized by two main pathological hallmarks: extracellular amyloid plaques and intracellular neurofibrillary tangles. Protein kinase C (PKC) has been classified as one of the cognitive kinases controlling memory and learning. By regulating several signalling pathways involved in amyloid and tau pathologies, it also plays an inhibitory role in AD pathophysiology. Among downstream targets of PKC are the embryonic lethal abnormal vision (ELAV)-like RNA-binding proteins that modulate the stability and the translation of specific target mRNAs involved in synaptic remodelling linked to cognitive processes. This MiniReview summarizes the current evidence on the role of PKC and ELAV-like proteins in learning and memory, highlighting how their derangement can contribute to AD pathophysiology. This last aspect emphasizes the potential of pharmacological activation of PKC as a promising therapeutic strategy for the treatment of AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Proteínas ELAV/fisiologia , Proteína Quinase C/fisiologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Ativadores de Enzimas/farmacologia , Humanos , Aprendizagem , Memória , Transdução de Sinais
17.
Stem Cells Dev ; 24(6): 701-13, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25347706

RESUMO

The guidance of developing neurons to the right position in the central nervous system is of central importance in brain development. Canonical transient receptor potential (TRPC) channels are thought to mediate turning responses of growth cones to guidance cues through fine control of calcium transients. Proliferating and 1- to 5-day-differentiated neural progenitor cells (NPCs) showed expression of Trpc1 and Trpc3 mRNA, while Trpc4-7 was not clearly detected. Time-lapse imaging showed that the motility pattern of neuronal cells was phasic with bursts of rapid movement (>60 µm/h), changes in direction, and intermittent slow phases or stallings (<40 µm/h), which frequently occurred in close contact with radial glial processes. Genetic interference with the TRPC3 and TRPC1 channel enhanced the motility of NPCs (burst frequency/stalling frequency). TRPC3-deficient cells or cells treated with the TRPC3 blocker pyr3 infrequently changed direction and seldom contacted radial glial processes. TRPC channels are also activated by group I metabotropic glutamate receptors (mGluR1 and mGluR5). As shown here, pyr3 blocked the calcium response mediated through mGluR5 in radial glial processes. Furthermore, 2-methyl-6-(phenylethynyl)pyridine, a blocker of mGluR5, affected the motility pattern in a similar way as TRPC3/6 double knockout or pyr3. The results suggest that radial glial cells exert attractant signals to migrating neuronal cells, which alter their motility pattern. Our results suggest that mGluR5 acting through TRPC3 is of central importance in radial glial-mediated neuronal guidance.


Assuntos
Células-Tronco Neurais/metabolismo , Neurogênese , Neurônios/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Transdução de Sinais , Canais de Cátion TRPC/metabolismo , Animais , Movimento Celular , Células Cultivadas , Células Ependimogliais/citologia , Células Ependimogliais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/citologia , Neurônios/citologia , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Receptor de Glutamato Metabotrópico 5/genética , Canais de Cátion TRPC/genética
18.
Neurosci Lett ; 494(1): 57-60, 2011 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-21362456

RESUMO

Despite the recent successes in producing orexin receptor subtype-selective antagonists, these are not commonly available, and therefore, agonist ligands are regularly used to ascribe cell and tissue responses to OX(1) or OX(2) receptors. In the current study, we have compared the native "subtype-selective" agonist, orexin-B, and its reputedly enhanced synthetic variant, Ala(11), d-Leu(15)-orexin-B, in two different recombinant cell lines. Ca2+ elevation was used as readout, and the two "selective" ligands were compared to the subtype-non-selective orexin-A, as is customary with these ligands. In transiently transfected HEK-293 cells, orexin-B showed 9-fold selectivity for the OX(2) receptor and Ala(11), d-Leu(15)-orexin-B 23-fold selectivity, when the potency ratios of ligands were compared between OX(1) and OX(2). In stable CHO-K1 cells, the corresponding values were only 2.6- and 14-fold, respectively. In addition to being low, the selectivity of the ligands was also variable, as indicated by the comparison of the two cell lines. For instance, the relative potency of Ala(11), d-Leu(15)-orexin-B at OX(2) in CHO cells was only 2.3-fold higher than its relative potency at OX(1) in HEK-293 cells; this indicates that Ala(11), d-Leu(15)-orexin-B does not show high enough selectivity for OX(2) to be useful for determination of receptor subtype expression. Comparison of the potencies of orexin-A and -B with respect to a number of published responses in OX(1)-expressing CHO cells, demonstrates that these show great variation: i.e., orexin-A is 1.6-18-fold more potent than orexin-B, depending on the response assessed. These data together suggest that orexin receptor ligands show signal trafficking, which makes agonist-based pharmacology unreliable.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Células HEK293 , Humanos , Ligantes , Receptores de Orexina , Orexinas , Ligação Proteica
19.
J Comp Physiol B ; 180(5): 707-14, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20135129

RESUMO

We examined the effect of exercise intensity and endurance training on plasma free fatty acid (FFA) kinetics and lipid metabolism in swimming muscles of reared sea trout. In both training groups [water current velocities 1 and 2 body lengths per second (bl s(-1))] the plasma level of FFAs decreased significantly (P < 0.001) compared to the control group. Similar significant (P < 0.01) post-exercise decrease was observed also in the lipase-esterase activity in the red muscle, but not in white. Moreover, in the group swimming with higher intensity a significantly higher (P < 0.05) lipase-esterase activity in the red muscle was found compared with the group on moderate exercise. As with cytochrome c oxidase activity, a significant elevation in the enzyme activity was also observed after training in the 1 bl s(-1) group in red and white muscle (P < 0.05 and P < 0.01, respectively). No changes were observed in beta hydroxyacyl CoA dehydrogenase activity. The lipid content was on average nine times higher in red compared to white muscle being 16.7, 21.1, and 24.9% in the red muscle of the control, 1 and 2 bl s(-1) groups, respectively, with a significant (P < 0.05) increase after training. We conclude that (1) unlike in mammals, plasma FFA kinetics and oxidation are not linearly related to exercise intensity in reared sea trout, (2) training enhances the capacity to uptake FFA from plasma, and (3) high intensity training shifts the proportion of energy derived from fat oxidation to carbohydrate-derived energy.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Condicionamento Físico Animal , Natação/fisiologia , Truta/fisiologia , 3-Hidroxiacil-CoA Desidrogenases/sangue , Animais , Complexo IV da Cadeia de Transporte de Elétrons/sangue , Ácidos Graxos não Esterificados/sangue , Feminino , Lipase/metabolismo , Masculino , Músculo Esquelético/fisiologia , Resistência Física/fisiologia
20.
Oecologia ; 155(1): 1-10, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17985159

RESUMO

Huey and Slatkin's (Q Rev Biol 51:363-384, 1976) cost-benefit model of lizard thermoregulation predicts variation in thermoregulatory strategies (from active thermoregulation to thermoconformity) with respect to the costs and benefits of the thermoregulatory behaviour and the thermal quality of the environment. Although this framework has been widely employed in correlative field studies, experimental tests aiming to evaluate the model are scarce. We conducted laboratory experiments to see whether the common lizard Zootoca vivipara, an active and effective thermoregulator in the field, can alter its thermoregulatory behaviour in response to differences in perceived predation risk and food supply in a constant thermal environment. Predation risk and food supply were represented by chemical cues of a sympatric snake predator and the lizards' food in the laboratory, respectively. We also compared males and postpartum females, which have different preferred or "target" body temperatures. Both sexes thermoregulated actively in all treatments. We detected sex-specific differences in the way lizards adjusted their accuracy of thermoregulation to the treatments: males were less accurate in the predation treatment, while no such effects were detected in females. Neither sex reacted to the food treatment. With regard to the two main types of thermoregulatory behaviour (activity and microhabitat selection), the treatments had no significant effects. However, postpartum females were more active than males in all treatments. Our results further stress that increasing physiological performance by active thermoregulation has high priority in lizard behaviour, but also shows that lizards can indeed shift their accuracy of thermoregulation in response to costs with possible immediate negative fitness effects (i.e. predation-caused mortality).


Assuntos
Regulação da Temperatura Corporal , Abastecimento de Alimentos , Lagartos/fisiologia , Comportamento Predatório , Ração Animal , Animais , Peso Corporal , Ritmo Circadiano , Feminino , Masculino , Atividade Motora
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA