Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38051503

RESUMO

Twenty-four hour rhythmicity in whole-body substrate metabolism, skeletal muscle clock gene expression and mitochondrial respiration is compromised upon insulin resistance. With exercise training known to ameliorate insulin resistance, our objective was to test if exercise training can reinforce diurnal variation in whole-body and skeletal muscle metabolism in men with insulin resistance. In a single-arm longitudinal design, 10 overweight and obese men with insulin resistance performed 12 weeks of high-intensity interval training recurrently in the afternoon (between 14.00 and 18.00 h) and were tested pre- and post-exercise training, while staying in a metabolic research unit for 2 days under free-living conditions with regular meals. On the second days, indirect calorimetry was performed at 08.00, 13.00, 18.00, 23.00 and 04.00 h, muscle biopsies were taken from the vastus lateralis at 08.30, 13.30 and 23.30 h, and blood was drawn at least bi-hourly over 24 h. Participants did not lose body weight over 12 weeks, but improved body composition and exercise capacity. Exercise training resulted in reduced 24-h plasma glucose levels, but did not modify free fatty acid and triacylglycerol levels. Diurnal variation of muscle clock gene expression was modified by exercise training with period genes showing an interaction (time × exercise) effect and reduced mRNA levels at 13.00 h. Exercise training increased mitochondrial respiration without inducing diurnal variation. Twenty-four-hour substrate metabolism and energy expenditure remained unchanged. Future studies should investigate alternative exercise strategies or types of interventions (e.g. diet or drugs aiming at improving insulin sensitivity) for their capacity to reinforce diurnal variation in substrate metabolism and mitochondrial respiration. KEY POINTS: Insulin resistance is associated with blunted 24-h flexibility in whole-body substrate metabolism and skeletal muscle mitochondrial respiration, and disruptions in the skeletal muscle molecular circadian clock. We hypothesized that exercise training modifies 24-h rhythmicity in whole-body substrate metabolism and diurnal variation in skeletal muscle molecular clock and mitochondrial respiration in men with insulin resistance. We found that metabolic inflexibility over 24 h persisted after exercise training, whereas mitochondrial respiration increased independent of time of day. Gene expression of Per1-3 and Rorα in skeletal muscle changed particularly close to the time of day at which exercise training was performed. These results provide the rationale to further investigate the differential metabolic impact of differently timed exercise to treat metabolic defects of insulin resistance that manifest at a particular time of day.

2.
Environ Microbiol ; 24(10): 4915-4930, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35837851

RESUMO

Flavobacteria are among the most important pathogens in freshwater salmonid aquaculture worldwide. Due to concerns regarding development of antibiotic resistance, phage therapy has been proposed as a solution to decrease pathogen load. However, application of phages is challenged by the development of phage resistance, and knowledge of the mechanisms and implications of phage resistance is therefore required. To study this, 27 phage-resistant isolates of F. psychrophilum were genome sequenced and characterized to identify genetic modifications and evaluate changes in phenotypic traits, including virulence against rainbow trout. Phage-resistant isolates showed reduction or loss of gliding motility, proteolytic activity, and adhesion to surfaces, and most isolates were completely non-virulent against rainbow trout fry. Genomic analysis revealed that most phage-resistant isolates had mutations in genes associated with gliding motility and virulence. Reversal of these mutations in a sub-set of isolates led to regained motility, proteolytic activity, virulence and phage susceptibility. Although costly, the fast generation of phage resistance driven by single, reversible mutations likely represents a flexible and efficient phage defence mechanism in F. psychrophilum. The results further suggest that phage administration in aquaculture systems to prevent F. psychrophilum outbreaks selects for non-virulent phage-resistant phenotypes.


Assuntos
Bacteriófagos , Doenças dos Peixes , Oncorhynchus mykiss , Animais , Bacteriófagos/genética , Doenças dos Peixes/microbiologia , Flavobacterium/genética , Mutação , Oncorhynchus mykiss/microbiologia , Virulência/genética
3.
Diabetologia ; 64(2): 424-436, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33258025

RESUMO

AIMS/HYPOTHESIS: Mitochondria operate in networks, adapting to external stresses and changes in cellular metabolic demand and are subject to various quality control mechanisms. On the basis of these traits, we here hypothesise that the regulation of mitochondrial networks in skeletal muscle is hampered in humans with compromised oxidative capacity and insulin sensitivity. METHODS: In a cross-sectional design, we compared four groups of participants (selected from previous studies) ranging in aerobic capacity and insulin sensitivity, i.e. participants with type 2 diabetes (n = 11), obese participants without diabetes (n = 12), lean individuals (n = 10) and endurance-trained athletes (n = 12); basal, overnight fasted muscle biopsies were newly analysed for the current study and we compared the levels of essential mitochondrial dynamics and quality control regulatory proteins in skeletal muscle tissue. RESULTS: Type 2 diabetes patients and obese participants were older than lean participants and athletes (58.6 ± 4.0 and 56.7 ± 7.2 vs 21.8 ± 2.5 and 25.1 ± 4.3 years, p < 0.001, respectively) and displayed a higher BMI (32.4 ± 3.7 and 31.0 ± 3.7 vs 22.1 ± 1.8 and 21.0 ± 1.5 kg/m2, p < 0.001, respectively) than lean individuals and endurance-trained athletes. Fission protein 1 (FIS1) and optic atrophy protein 1 (OPA1) protein content was highest in muscle from athletes and lowest in participants with type 2 diabetes and obesity, respectively (FIS1: 1.86 ± 0.79 vs 0.79 ± 0.51 AU, p = 0.002; and OPA1: 1.55 ± 0.64 vs 0.76 ± 0.52 AU, p = 0.014), which coincided with mitochondrial network fragmentation in individuals with type 2 diabetes, as assessed by confocal microscopy in a subset of type 2 diabetes patients vs endurance-trained athletes (n = 6). Furthermore, lean individuals and athletes displayed a mitonuclear protein balance that was different from obese participants and those with type 2 diabetes. Mitonuclear protein balance also associated with heat shock protein 60 (HSP60) protein levels, which were higher in athletes when compared with participants with obesity (p = 0.048) and type 2 diabetes (p = 0.002), indicative for activation of the mitochondrial unfolded protein response. Finally, OPA1, FIS1 and HSP60 correlated positively with aerobic capacity (r = 0.48, p = 0.0001; r = 0.55, p < 0.001 and r = 0.61, p < 0.0001, respectively) and insulin sensitivity (r = 0.40, p = 0.008; r = 0.44, p = 0.003 and r = 0.48, p = 0.001, respectively). CONCLUSIONS/INTERPRETATION: Collectively, our data suggest that mitochondrial dynamics and quality control in skeletal muscle are linked to oxidative capacity in humans, which may play a role in the maintenance of muscle insulin sensitivity. CLINICAL TRIAL REGISTRY: numbers NCT00943059, NCT01298375 and NL1888 Graphical abstract.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina , Mitocôndrias Musculares/metabolismo , Dinâmica Mitocondrial , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Adulto , Atletas , Biópsia , Estudos de Casos e Controles , Chaperonina 60/metabolismo , Diabetes Mellitus Tipo 2/patologia , Feminino , GTP Fosfo-Hidrolases/metabolismo , Humanos , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Mitocôndrias Musculares/patologia , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/patologia , Obesidade/patologia , Oxirredução , Consumo de Oxigênio , Adulto Jovem
4.
Diabetologia ; 64(12): 2817-2828, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34510226

RESUMO

AIMS/HYPOTHESIS: In our current society sedentary behaviour predominates in most people and is associated with the risk of developing type 2 diabetes. It has been suggested that replacing sitting time by standing and walking could be beneficial for individuals with type 2 diabetes but the underlying mechanisms are unknown and direct comparisons with exercise are lacking. Our objective was to directly compare metabolic responses of either sitting less or exercising, relative to being sedentary. METHODS: We performed a randomised, crossover intervention study in 12 overweight women who performed three well-controlled 4 day activity regimens: (1) sitting regimen (sitting 14 h/day); (2) exercise regimen (sitting 13 h/day, exercise 1 h/day); and (3) sitting less regimen (sitting 9 h/day, standing 4 h/day and walking 3 h/day). The primary outcome was insulin sensitivity measured by a two-step hyperinsulinaemic-euglycaemic clamp. We additionally performed metabolomics on muscle biopsies taken before the clamp to identify changes at the molecular level. RESULTS: Replacing sitting time by standing and walking over 4 days resulted in improved peripheral insulin sensitivity, comparable with the improvement achieved by moderate-to-vigorous exercise. Specifically, we report a significant improvement in peripheral insulin sensitivity in the sitting less (~13%) and the exercise regimen (~20%), compared with the sitting regimen. Furthermore, sitting less shifted the underlying muscle metabolome towards that seen with moderate-to-vigorous exercise, compared with the sitting regimen. CONCLUSIONS/INTERPRETATIONS: Replacing sitting time by standing and walking is an attractive alternative to moderate-to-vigorous exercise for improving metabolic health. TRIAL REGISTRATION: ClinicalTrials.gov NCT03912922.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Feminino , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Pós-Menopausa , Postura Sentada , Caminhada/fisiologia
5.
Diabetologia ; 63(6): 1211-1222, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32185462

RESUMO

AIMS/HYPOTHESIS: Physical inactivity, low mitochondrial function, increased intramyocellular lipid (IMCL) deposition and reduced insulin sensitivity are common denominators of chronic metabolic disorders, like obesity and type 2 diabetes. Yet, whether low mitochondrial function predisposes to insulin resistance in humans is still unknown. METHODS: Here we investigated, in an intervention study, whether muscle with low mitochondrial oxidative capacity, induced by one-legged physical inactivity, would feature stronger signs of lipid-induced insulin resistance. To this end, ten male participants (age 22.4 ± 4.2 years, BMI 21.3 ± 2.0 kg/m2) underwent a 12 day unilateral lower-limb suspension with the contralateral leg serving as an active internal control. RESULTS: In vivo, mitochondrial oxidative capacity, assessed by phosphocreatine (PCr)-recovery half-time, was lower in the inactive vs active leg. Ex vivo, palmitate oxidation to 14CO2 was lower in the suspended leg vs the active leg; however, this did not result in significantly higher [14C]palmitate incorporation into triacylglycerol. The reduced mitochondrial function in the suspended leg was, however, paralleled by augmented IMCL content in both musculus tibialis anterior and musculus vastus lateralis, and by increased membrane bound protein kinase C (PKC) θ. Finally, upon lipid infusion, insulin signalling was lower in the suspended vs active leg. CONCLUSIONS/INTERPRETATION: Together, these results demonstrate, in a unique human in vivo model, that a low mitochondrial oxidative capacity due to physical inactivity directly impacts IMCL accumulation and PKCθ translocation, resulting in impaired insulin signalling upon lipid infusion. This demonstrates the importance of mitochondrial oxidative capacity and muscle fat accumulation in the development of insulin resistance in humans. TRIAL REGISTRATION: ClinicalTrial.gov NCT01576250. FUNDING: PS was supported by a 'VICI' Research Grant for innovative research from the Netherlands Organization for Scientific Research (Grant 918.96.618).


Assuntos
Insulina/metabolismo , Perna (Membro)/fisiologia , Músculo Esquelético/metabolismo , Restrição Física/fisiologia , Humanos , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/fisiologia , Masculino , Mitocôndrias/metabolismo , Músculo Esquelético/fisiologia , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia
6.
J Cell Physiol ; 235(12): 9851-9863, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32452584

RESUMO

Using an unbiased high-throughput microRNA (miRNA)-silencing screen combined with functional readouts for mitochondrial oxidative capacity in C2C12 myocytes, we previously identified 19 miRNAs as putative regulators of skeletal muscle mitochondrial metabolism. In the current study, we highlight miRNA-204-5p, identified from this screen, and further studied its role in the regulation of skeletal muscle mitochondrial function. Following silencing of miRNA-204-5p in C2C12 myotubes, gene and protein expression were assessed using quantitative polymerase chain reaction, microarray analysis, and western blot analysis, while morphological changes were studied by confocal microscopy. In addition, miRNA-204-5p expression was quantified in human skeletal muscle biopsies and associated with in vivo mitochondrial oxidative capacity. Transcript levels of PGC-1α (3.71-fold; p < .01), predicted as an miR-204-5p target, as well as mitochondrial DNA copy number (p < .05) and citrate synthase activity (p = .06) were increased upon miRNA-204-5p silencing in C2C12 myotubes. Silencing of miRNA-204-5p further resulted in morphological changes, induced gene expression of autophagy marker light chain 3 protein b (LC3B; q = .05), and reduced expression of the mitophagy marker FUNDC1 (q = .01). Confocal imaging revealed colocalization between the autophagosome marker LC3B and the mitochondrial marker OxPhos upon miRNA-204-5p silencing. Finally, miRNA-204-5p was differentially expressed in human subjects displaying large variation in oxidative capacity and its expression levels associated with in vivo measures of skeletal muscle mitochondrial function. In summary, silencing of miRNA-204-5p in C2C12 myotubes stimulated mitochondrial biogenesis, impacted on cellular morphology, and altered expression of markers related to autophagy and mitophagy. The association between miRNA-204-5p and in vivo mitochondrial function in human skeletal muscle further identifies miRNA-204-5p as an interesting modulator of skeletal muscle mitochondrial metabolism.


Assuntos
MicroRNAs/genética , Mitocôndrias/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Animais , Autofagia/genética , Biópsia , Humanos , Camundongos , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/metabolismo , Mitofagia/genética , Biogênese de Organelas , Oxirredução , Estresse Oxidativo/genética
7.
J Cell Physiol ; 234(5): 6601-6610, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30417335

RESUMO

Proper mitochondrial function plays a central role in cellular metabolism. Various diseases as well as aging are associated with diminished mitochondrial function. Previously, we identified 19 miRNAs putatively involved in the regulation of mitochondrial metabolism in skeletal muscle, a highly metabolically active tissue. In the current study, these 19 miRNAs were individually silenced in C2C12 myotubes using antisense oligonucleotides, followed by measurement of the expression of 27 genes known to play a major role in regulating mitochondrial metabolism. Based on the outcomes, we then focused on miR-382-5p and identified pathways affected by its silencing using microarrays, investigated protein expression, and studied cellular respiration. Silencing of miRNA-382-5p significantly increased the expression of several genes involved in mitochondrial dynamics and biogenesis. Conventional microarray analysis in C2C12 myotubes silenced for miRNA-382-5p revealed a collective downregulation of mitochondrial ribosomal proteins and respiratory chain proteins. This effect was accompanied by an imbalance between mitochondrial proteins encoded by the nuclear and mitochondrial DNA (1.35-fold, p < 0.01) and an induction of HSP60 protein (1.31-fold, p < 0.05), indicating activation of the mitochondrial unfolded protein response (mtUPR). Furthermore, silencing of miR-382-5p reduced basal oxygen consumption rate by 14% ( p < 0.05) without affecting mitochondrial content, pointing towards a more efficient mitochondrial function as a result of improved mitochondrial quality control. Taken together, silencing of miR-382-5p induces a mitonuclear protein imbalance and activates the mtUPR in skeletal muscle, a phenomenon that was previously associated with improved longevity.


Assuntos
MicroRNAs/genética , Mitocôndrias Musculares/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Animais , Camundongos , Músculo Esquelético/metabolismo , Proteínas Ribossômicas/metabolismo , Resposta a Proteínas não Dobradas/genética
8.
J Physiol ; 596(5): 857-868, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29110300

RESUMO

KEY POINTS: Intramyocellular lipid storage is negatively associated with insulin sensitivity. However, endurance trained athletes and type 2 diabetes mellitus (T2DM) patients store similar amounts of lipids in their muscle; the so-called athlete's paradox. Compared to T2DM, trained athletes possess higher levels of perilipin 5 (PLIN5), a lipid droplet (LD) coating protein. We examined whether coating LD with PLIN5 affects the pattern of muscle lipid (LD size and number) in relation to the athlete's paradox. Despite differences in PLIN5 protein content, we observed that coating the LD with PLIN5 could not explain the observed differences in LD size and number between athletes and T2DM. PLIN5-coated LDs were positively associated with oxidative capacity but not with insulin sensitivity. We conclude that coating of LDs with PLIN5 cannot causally explain the athlete's paradox. ABSTRACT: Intramyocellular lipid (IMCL) hampers insulin sensitivity, albeit not in endurance-trained athletes (Trained). Compared to type 2 diabetes mellitus (T2DM) patients, Trained subjects have high levels of perilipin 5 (PLIN5). In the present study, we tested whether the fraction of PLIN5-coated lipid droplets (LDs) is a determinant of skeletal muscle insulin sensitivity and contributes to the athlete's paradox. Muscle biopsies were taken from eight Trained, Lean sedentary, Obese and T2DM subjects. Trained, Obese and T2DM subjects were matched for total IMCL content. Confocal images were analysed for lipid area fraction, LD size and number and PLIN5+ and PLIN5- LDs were measured. A stepwise linear regression was performed to identify factors explaining observed variance in glucose infusion rate (GIR). Trained and T2DM subjects stored IMCL differently; Trained subjects had a higher number of LDs compared to T2DM subjects (0.037 ± 0.004 µm-2 vs. 0.023 ± 0.003 µm-2 , P = 0.024) that were non-significantly smaller (0.27 ± 0.01 µm2 vs. 0.32 ± 0.02 µm2 , P = 0.197, Trained vs. T2DM). Even though total PLIN5 protein content was almost double in Trained vs. T2DM subjects (1.65 ± 0.21 AU vs. 0.89 ± 0.09 AU, P = 0.004), PLIN5 coating did not affect LD number or size significantly. Of the observed variance in GIR, the largest fraction by far (70.2%) was explained by maximal oxygen uptake. Adding PLIN5 protein content or PLIN5+ LDs increased the explained variance in GIR (74.7% and 80.7% for PLIN5 protein content and PLIN5+ LDs, respectively). Thus, the putative relationship between PLIN5 and insulin sensitivity is at best indirect and is apparent only in conjunction with maximal oxygen uptake. Hence, PLIN5 abundance cannot be causally linked to the athlete's paradox.


Assuntos
Atletas , Diabetes Mellitus Tipo 2/fisiopatologia , Resistência à Insulina , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Músculo Esquelético/fisiopatologia , Perilipina-5/metabolismo , Adulto , Estudos de Casos e Controles , Exercício Físico , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/fisiopatologia , Resistência Física , Adulto Jovem
9.
Diabetologia ; 59(5): 1030-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26886198

RESUMO

AIMS/HYPOTHESIS: Dissipating energy via mitochondrial uncoupling has been suggested to contribute to enhanced insulin sensitivity. We hypothesised that skeletal muscle mitochondria of endurance-trained athletes have increased sensitivity for fatty acid (FA)-induced uncoupling, which is driven by the mitochondrial protein adenine nucleotide translocase 1 (ANT1). METHODS: Capacity for FA-induced uncoupling was measured in endurance-trained male athletes (T) and sedentary young men (UT) in an observational study and also in isolated skeletal muscle mitochondria from Zucker diabetic fatty (ZDF) rats and C2C12 myotubes following small interfering RNA (siRNA)-mediated gene silencing of ANT1. Thus, fuelled by glutamate/succinate (fibres) or pyruvate (mitochondria and myotubes) and in the presence of oligomycin to block ATP synthesis, increasing levels of oleate (fibres) or palmitate (mitochondria and myotubes) were automatically titrated while respiration was monitored. Insulin sensitivity was measured by hyperinsulinaemic-euglycaemic clamp in humans and via insulin-stimulated glucose uptake in myotubes. RESULTS: Skeletal muscle from the T group displayed increased sensitivity to FA-induced uncoupling (p = 0.011) compared with muscle from the UT group, and this was associated with elevated insulin sensitivity (p = 0.034). ANT1 expression was increased in T (p = 0.013). Mitochondria from ZDF rats displayed decreased sensitivity for FA-induced uncoupling (p = 0.008). This difference disappeared in the presence of the adenine nucleotide translocator inhibitor carboxyatractyloside. Partial knockdown of ANT1 in C2C12 myotubes decreased sensitivity to the FA-induced uncoupling (p = 0.008) and insulin-stimulated glucose uptake (p = 0.025) compared with controls. CONCLUSIONS/INTERPRETATION: Increased sensitivity to FA-induced uncoupling is associated with enhanced insulin sensitivity and is affected by ANT1 activity in skeletal muscle. FA-induced mitochondrial uncoupling may help to preserve insulin sensitivity in the face of a high supply of FAs. TRIAL REGISTRATION: www.trialregister.nl NTR2002.


Assuntos
Translocador 1 do Nucleotídeo Adenina/metabolismo , Ácidos Graxos/farmacologia , Músculo Esquelético/metabolismo , Translocador 1 do Nucleotídeo Adenina/genética , Animais , Humanos , Técnicas In Vitro , Insulina/genética , Insulina/metabolismo , Resistência à Insulina/genética , Masculino , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Translocases Mitocondriais de ADP e ATP/genética , Translocases Mitocondriais de ADP e ATP/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Ácido Oleico/farmacologia , Ácido Palmítico/farmacologia , Ratos , Ratos Zucker
10.
Physiol Rep ; 11(12): e15734, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37340318

RESUMO

Mitochondria are organelles that fuel cellular energy requirements by ATP formation via aerobic metabolism. Given the wide variety of methods to assess skeletal muscle mitochondrial capacity, we tested how well different invasive and noninvasive markers of skeletal muscle mitochondrial capacity reflect mitochondrial respiration in permeabilized muscle fibers. Nineteen young men (mean age: 24 ± 4 years) were recruited, and a muscle biopsy was collected to determine mitochondrial respiration from permeabilized muscle fibers and to quantify markers of mitochondrial capacity, content such as citrate synthase (CS) activity, mitochondrial DNA copy number, TOMM20, VDAC, and protein content for complex I-V of the oxidative phosphorylation (OXPHOS) system. Additionally, all participants underwent noninvasive assessments of mitochondrial capacity: PCr recovery postexercise (by 31 P-MRS), maximal aerobic capacity, and gross exercise efficiency by cycling exercise. From the invasive markers, Complex V protein content and CS activity showed the strongest concordance (Rc = 0.50 to 0.72) with ADP-stimulated coupled mitochondrial respiration, fueled by various substrates. Complex V protein content showed the strongest concordance (Rc = 0.72) with maximally uncoupled mitochondrial respiration. From the noninvasive markers, gross exercise efficiency, VO2max , and PCr recovery exhibited concordance values between 0.50 and 0.77 with ADP-stimulated coupled mitochondrial respiration. Gross exercise efficiency showed the strongest concordance with maximally uncoupled mitochondrial respiration (Rc = 0.67). From the invasive markers, Complex V protein content and CS activity are surrogates that best reflect skeletal muscle mitochondrial respiratory capacity. From the noninvasive markers, exercise efficiency and PCr recovery postexercise most closely reflect skeletal muscle mitochondrial respiratory capacity.


Assuntos
Mitocôndrias Musculares , Músculo Esquelético , Masculino , Humanos , Adulto Jovem , Adulto , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio
11.
Mol Metab ; 72: 101727, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37062525

RESUMO

OBJECTIVE: Mitochondrial network dynamics may play role in metabolic homeostasis. Whether mitochondrial network dynamics are involved in adaptations to day-night fluctuations in energy supply and demand is unclear. Here we visualized and quantified the mitochondrial network morphology in human skeletal muscle of young healthy lean and older individuals with obesity over the course of 24 h METHODS: Muscle biopsies taken at 5 timepoints over a 24-hour period obtained from young healthy lean and older metabolically impaired obese males were analyzed for mitochondrial network integrity with confocal laser scanning microscopy. Variation of level of fragmentation over the course of the day were aligned with variation of mitochondrial respiration over the day RESULTS: Young healthy lean individuals displayed a day-night rhythmicity in mitochondrial network morphology, which aligned with the day-night rhythmicity of mitochondrial respiratory capacity, with a more fused network coinciding with higher mitochondrial respiratory capacity. In the older individuals with obesity, the mitochondrial network was more fragmented overall compared to young healthy lean individuals and completely lacked 24 h rhythmicity, which was also true for the mitochondrial respiratory capacity CONCLUSIONS: Our data shows a paralleled rhythmicity between mitochondrial network morphology and mitochondrial oxidative capacity, which oscillates over the course of a mimicked real-life day in human skeletal muscle of young, healthy lean individuals. In older individuals with obesity, the lack of a 24-hour rhythmicity in mitochondrial network connectivity was also aligned with a lack in respiratory capacity. This suggests that 24-hour rhythmicity in mitochondrial network connectivity is a determinant of rhythmicity in mitochondrial respiratory capacity. Thus, restoring mitochondrial network integrity may promote mitochondrial respiratory capacity and hence contribute to blunting the metabolic aberrations in individuals with a disturbed 24-hour rhythmicity in metabolism, like older individuals with obesity.


Assuntos
Músculo Esquelético , Obesidade , Masculino , Humanos , Idoso , Obesidade/metabolismo , Músculo Esquelético/metabolismo , Ritmo Circadiano , Respiração , Biópsia
12.
Metabolism ; 140: 155396, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36592688

RESUMO

AIMS/HYPOTHESIS: Sodium-glucose cotransporter 2 inhibitor (SGLT2i) treatment in type 2 diabetes mellitus patients results in glucosuria, causing an energy loss, and triggers beneficial metabolic adaptations. It is so far unknown if SGLT2i exerts beneficial metabolic effects in prediabetic insulin resistant individuals, yet this is of interest since SGLT2is also reduce the risk for progression of heart failure and chronic kidney disease in patients without diabetes. METHODS: Fourteen prediabetic insulin resistant individuals (BMI: 30.3 ± 2.1 kg/m2; age: 66.3 ± 6.2 years) underwent 2-weeks of treatment with dapagliflozin (10 mg/day) or placebo in a randomized, placebo-controlled, cross-over design. Outcome parameters include 24-hour and nocturnal substrate oxidation, and twenty-four-hour blood substrate and insulin levels. Hepatic glycogen and lipid content/composition were measured by MRS. Muscle biopsies were taken to measure mitochondrial oxidative capacity and glycogen and lipid content. RESULTS: Dapagliflozin treatment resulted in a urinary glucose excretion of 36 g/24-h, leading to a negative energy and fat balance. Dapagliflozin treatment resulted in a higher 24-hour and nocturnal fat oxidation (p = 0.043 and p = 0.039, respectively), and a lower 24-hour carbohydrate oxidation (p = 0.048). Twenty-four-hour plasma glucose levels were lower (AUC; p = 0.016), while 24-hour free fatty acids and nocturnal ß-hydroxybutyrate levels were higher (AUC; p = 0.002 and p = 0.012, respectively) after dapagliflozin compared to placebo. Maximal mitochondrial oxidative capacity was higher after dapagliflozin treatment (dapagliflozin: 87.6 ± 5.4, placebo: 78.1 ± 5.5 pmol/mg/s, p = 0.007). Hepatic glycogen and lipid content were not significantly changed by dapagliflozin compared to placebo. However, muscle glycogen levels were numerically higher in the afternoon in individuals on placebo (morning: 332.9 ± 27.9, afternoon: 368.8 ± 13.1 nmol/mg), while numerically lower in the afternoon on dapagliflozin treatment (morning: 371.7 ± 22.8, afternoon: 340.5 ± 24.3 nmol/mg). CONCLUSIONS/INTERPRETATION: Dapagliflozin treatment of prediabetic insulin resistant individuals for 14 days resulted in significant metabolic adaptations in whole-body and skeletal muscle substrate metabolism despite being weight neutral. Dapagliflozin improved fat oxidation and ex vivo skeletal muscle mitochondrial oxidative capacity, mimicking the effects of calorie restriction. TRIAL REGISTRATION: ClinicalTrials.gov NCT03721874.


Assuntos
Diabetes Mellitus Tipo 2 , Estado Pré-Diabético , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Pessoa de Meia-Idade , Idoso , Insulina/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Estado Pré-Diabético/tratamento farmacológico , Estudos Cross-Over , Glicemia/metabolismo , Glicogênio Hepático , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos , Compostos Benzidrílicos/farmacologia , Glucose , Lipídeos , Sódio , Método Duplo-Cego , Hipoglicemiantes/uso terapêutico
13.
Sci Rep ; 13(1): 8346, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221197

RESUMO

Cardiac energy status, measured as phosphocreatine (PCr)/adenosine triphosphate (ATP) ratio with 31P-Magnetic Resonance Spectroscopy (31P-MRS) in vivo, is a prognostic factor in heart failure and is lowered in cardiometabolic disease. It has been suggested that, as oxidative phosphorylation is the major contributor to ATP synthesis, PCr/ATP ratio might be a reflection of cardiac mitochondrial function. The objective of the study was to investigate whether PCr/ATP ratios can be used as in vivo marker for cardiac mitochondrial function. We enrolled thirty-eight patients scheduled for open-heart surgery in this study. Cardiac 31P-MRS was performed before surgery. Tissue from the right atrial appendage was obtained during surgery for high-resolution respirometry for the assessment of mitochondrial function. There was no correlation between the PCr/ATP ratio and ADP-stimulated respiration rates (octanoylcarnitine R2 < 0.005, p = 0.74; pyruvate R2 < 0.025, p = 0.41) nor with maximally uncoupled respiration (octanoylcarnitine R2 = 0.005, p = 0.71; pyruvate R2 = 0.040, p = 0.26). PCr/ATP ratio did correlate with indexed LV end systolic mass. As no direct correlation between cardiac energy status (PCr/ATP) and mitochondrial function in the heart was found, the study suggests that mitochondrial function might not the only determinant of cardiac energy status. Interpretation should be done in the right context in cardiac metabolic studies.


Assuntos
Trifosfato de Adenosina , Mitocôndrias , Humanos , Fosfocreatina , Ácido Pirúvico
14.
Nat Commun ; 14(1): 173, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635304

RESUMO

ß2-agonist treatment improves skeletal muscle glucose uptake and whole-body glucose homeostasis in rodents, likely via mTORC2-mediated signalling. However, human data on this topic is virtually absent. We here investigate the effects of two-weeks treatment with the ß2-agonist clenbuterol (40 µg/day) on glucose control as well as energy- and substrate metabolism in healthy young men (age: 18-30 years, BMI: 20-25 kg/m2) in a randomised, placebo-controlled, double-blinded, cross-over study (ClinicalTrials.gov-identifier: NCT03800290). Randomisation occurred by controlled randomisation and the final allocation sequence was seven (period 1: clenbuterol, period 2: placebo) to four (period 1: placebo, period 2: clenbuterol). The primary and secondary outcome were peripheral insulin-stimulated glucose disposal and skeletal muscle GLUT4 translocation, respectively. Primary analyses were performed on eleven participants. No serious adverse events were reported. The study was performed at Maastricht University, Maastricht, The Netherlands, between August 2019 and April 2021. Clenbuterol treatment improved peripheral insulin-stimulated glucose disposal by 13% (46.6 ± 3.5 versus 41.2 ± 2.7 µmol/kg/min, p = 0.032), whereas skeletal muscle GLUT4 translocation assessed in overnight fasted muscle biopsies remained unaffected. These results highlight the potential of ß2-agonist treatment in improving skeletal muscle glucose uptake and underscore the therapeutic value of this pathway for the treatment of type 2 diabetes. However, given the well-known (cardiovascular) side-effects of systemic ß2-agonist treatment, further exploration on the underlying mechanisms is needed to identify viable therapeutic targets.


Assuntos
Clembuterol , Diabetes Mellitus Tipo 2 , Masculino , Humanos , Adolescente , Adulto Jovem , Adulto , Glucose/metabolismo , Clembuterol/farmacologia , Clembuterol/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Estudos Cross-Over , Músculo Esquelético/metabolismo
15.
Phage (New Rochelle) ; 3(1): 28-37, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37025924

RESUMO

Background: Flavobacterium psychrophilum is the causative agent of the bacterial cold-water disease and rainbow trout fry syndrome. Owing to the issues associated with increasing use of antibiotics to control the diseases, phage therapy has been proposed as an alternative method to control Flavobacterium infection within the industry. Materials and Methods: We explored two simple and fast in vitro strategies for the isolation of evolved F. psychrophilum phages, using three well-characterized phages FpV4, FpV9, and FPSV-S20. Results: During in vitro serial transfer experiments, 12 evolved phages were selected 72-96 h after phage exposure in the first or second week. Phenotype analysis showed improvement of host range and efficiency of plating and adsorption constants. Comparative genomic analysis of the evolved phages identified 13 independent point mutations causing amino acid changes mostly in hypothetical proteins. Conclusions: These results confirmed the reliability and effectivity of two strategies to isolate evolved F. psychrophilum phages, which may be used to expand phage-host range and target phage-resistant pathogens in phage therapy applications against Flavobacterium infections.

16.
Mol Metab ; 66: 101620, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36280113

RESUMO

OBJECTIVE: SGLT2 inhibitors increase urinary glucose excretion and have beneficial effects on cardiovascular and renal outcomes; the underlying mechanism may be metabolic adaptations due to urinary glucose loss. Here, we investigated the cellular and molecular effects of 5 weeks of dapagliflozin treatment on skeletal muscle metabolism in type 2 diabetes patients. METHODS: Twenty-six type 2 diabetes mellitus patients were randomized to a 5-week double-blind, cross-over study with 6-8-week wash-out. Skeletal muscle acetylcarnitine levels, intramyocellular lipid (IMCL) content and phosphocreatine (PCr) recovery rate were measured by magnetic resonance spectroscopy (MRS). Ex vivo mitochondrial respiration was measured in skeletal muscle fibers using high resolution respirometry. Intramyocellular lipid droplet and mitochondrial network dynamics were investigated using confocal microscopy. Skeletal muscle levels of acylcarnitines, amino acids and TCA cycle intermediates were measured. Expression of genes involved in fatty acid metabolism were investigated. RESULTS: Mitochondrial function, mitochondrial network integrity and citrate synthase and carnitine acetyltransferase activities in skeletal muscle were unaltered after dapagliflozin treatment. Dapagliflozin treatment increased intramyocellular lipid content (0.060 (0.011, 0.110) %, p = 0.019). Myocellular lipid droplets increased in size (0.03 µm2 (0.01-0.06), p < 0.05) and number (0.003 µm-2 (-0.001-0.007), p = 0.09) upon dapagliflozin treatment. CPT1A, CPT1B and malonyl CoA-decarboxylase mRNA expression was increased by dapagliflozin. Fasting acylcarnitine species and C4-OH carnitine levels (0.4704 (0.1246, 0.8162) pmoles∗mg tissue-1, p < 0.001) in skeletal muscle were higher after dapagliflozin treatment, while acetylcarnitine levels were lower (-40.0774 (-64.4766, -15.6782) pmoles∗mg tissue-1, p < 0.001). Fasting levels of several amino acids, succinate, alpha-ketoglutarate and lactate in skeletal muscle were significantly lower after dapagliflozin treatment. CONCLUSION: Dapagliflozin treatment for 5 weeks leads to adaptive changes in skeletal muscle substrate metabolism favoring metabolism of fatty acid and ketone bodies and reduced glycolytic flux. The trial is registered with ClinicalTrials.gov, number NCT03338855.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Estudos Cross-Over , Acetilcarnitina/metabolismo , Acetilcarnitina/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Glucose/metabolismo , Ácidos Graxos/metabolismo , Lipídeos , Aminoácidos/metabolismo
17.
Adipocyte ; 10(1): 408-411, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34402717

RESUMO

Angiotensin converting enzyme-2 (ACE2) is the cell-surface receptor enabling cellular entry of SARS-CoV-2. ACE2 is highly expressed in adipose tissue (AT), rendering AT a potential SARS-CoV-2 reservoir contributing to massive viral spread in COVID-19 patients with obesity. Although rodent and cell studies suggest that the polyphenol resveratrol alters ACE2, human studies are lacking. Here, we investigated the effects of 30-days resveratrol supplementation on RAS components in AT and skeletal muscle in men with obesity in a placebo-controlled cross-over study. Resveratrol markedly decreased ACE2 (~40%) and leptin (~30%), but did neither alter angiotensinogen, ACE and AT1R expression in AT nor skeletal muscle RAS components. These findings demonstrate that resveratrol supplementation reduces ACE2 in AT, which might dampen SARS-CoV-2 spread in COVID-19.


Assuntos
Tecido Adiposo/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Resveratrol/administração & dosagem , Tecido Adiposo/citologia , Enzima de Conversão de Angiotensina 2/genética , COVID-19/patologia , COVID-19/virologia , Estudos Cross-Over , Suplementos Nutricionais , Método Duplo-Cego , Regulação para Baixo/efeitos dos fármacos , Humanos , Leptina/genética , Leptina/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade/tratamento farmacológico , Obesidade/patologia , Efeito Placebo , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Resveratrol/farmacologia , SARS-CoV-2/isolamento & purificação
18.
Microorganisms ; 9(8)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34442736

RESUMO

The fish pathogen Flavobacterium psychrophilum is currently one of the main pathogenic bacteria hampering the productivity of salmonid farming worldwide. Although putative virulence determinants have been identified, the genetic basis for variation in virulence of F. psychrophilum is not fully understood. In this study, we analyzed whole-genome sequences of a collection of 25 F. psychrophilum isolates from Baltic Sea countries and compared genomic information with a previous determination of their virulence in juvenile rainbow trout. The results revealed a conserved population of F. psychrophilum that were consistently present across the Baltic Sea countries, with no clear association between genomic repertoire, phylogenomic, or gene distribution and virulence traits. However, analysis of the entire genome of four F. psychrophilum isolates by hybrid assembly provided an unprecedented resolution for discriminating even highly related isolates. The results showed that isolates with different virulence phenotypes harbored genetic variances on a number of consecutive leucine-rich repeat (LRR) proteins, repetitive motifs in gliding motility-associated protein, and the insertion of transposable elements into intergenic and genic regions. Thus, these findings provide novel insights into the genetic variation of these elements and their putative role in the modulation of F. psychrophilum virulence.

19.
Obesity (Silver Spring) ; 29(9): 1423-1426, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33955183

RESUMO

OBJECTIVE: Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) uses the host's angiotensin-converting enzyme 2 (ACE2) as a cellular entry point. Therefore, modulating ACE2 might impact SARS-CoV-2 viral replication, shedding, and coronavirus disease 2019 (COVID-19) severity. Here, it was investigated whether the angiotensin II type 1 receptor blocker valsartan alters the expression of renin-angiotensin system (RAS) components, including ACE2, in human adipose tissue (AT) and skeletal muscle. METHODS: A randomized, double-blind, placebo-controlled clinical trial was performed, in which 36 participants (BMI 31.0 ± 0.8 kg/m2 ) with impaired glucose metabolism received either valsartan or placebo for 26 weeks. Before and after 26 weeks' treatment, abdominal subcutaneous AT and skeletal muscle biopsies were obtained, and gene expression of RAS components was measured by quantitative reverse transcription polymerase chain reaction. RESULTS: Valsartan treatment did not significantly impact the expression of RAS components, including ACE2, in AT and skeletal muscle. CONCLUSIONS: Given the pivotal role of ACE2 in SARS-CoV-2 spread and the clinical outcomes in COVID-19 patients, the data suggest that the putative beneficial effects of angiotensin II type 1 receptor blockers on the clinical outcomes of patients with COVID-19 may not be mediated through altered ACE2 expression in abdominal subcutaneous AT.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II , Enzima de Conversão de Angiotensina 2/metabolismo , Sistema Renina-Angiotensina , Valsartana , Tecido Adiposo/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , COVID-19 , Humanos , Músculo Esquelético/metabolismo , Valsartana/farmacologia
20.
Microorganisms ; 9(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946270

RESUMO

The microbial community surrounding fish eyed eggs can harbor pathogenic bacteria. In this study we focused on rainbow trout (Oncorhynchus mykiss) eyed eggs and the potential of bacteriophages against the pathogenic bacteria Flavobacterium psychrophilum and F. columnare. An infection bath method was first established, and the effects of singular phages on fish eggs was assessed (survival of eyed eggs, interaction of phages with eyed eggs). Subsequently, bacteria-challenged eyed eggs were exposed to phages to evaluate their effects in controlling the bacterial population. Culture-based methods were used to enumerate the number of bacteria and/or phages associated with eyed eggs and in the surrounding environment. The results of the study showed that, with our infection model, it was possible to re-isolate F. psychrophilum associated with eyed eggs after the infection procedure, without affecting the survival of the eggs in the short term. However, this was not possible for F. columnare, as this bacterium grows at higher temperatures than the ones recommended for incubation of rainbow trout eyed eggs. Bacteriophages do not appear to negatively affect the survival of rainbow trout eyed eggs and they do not seem to strongly adhere to the surface of eyed eggs either. Finally, the results demonstrated a strong potential for short term (24 h) phage control of F. psychrophilum. However, further studies are needed to explore if phage control can be maintained for a longer period and to further elucidate the mechanisms of interactions between Flavobacteria and their phages in association with fish eggs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA