Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Interprof Care ; 33(6): 812-815, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31068027

RESUMO

Often, students converge on the acute healthcare setting in professional silos, focusing solely on key learning objectives specific to their profession. The use of an Interprofessional Clinical Supervision (IPCS) model may enable students from medicine, nursing, pharmacy, and allied health to develop profession-specific skills, provide opportunities to improve communication skills within an interprofessional team and enhance student understanding of other health professionals' contributions to care delivery. Clinical supervision of these students within an IPCS model presents a number of logistical and interprofessional challenges. Through the use of two semi-structured group interviews, we sought to understand interprofessional clinical supervisors' (n = 4) perspective of implementing the IPCS model. Thematic analysis revealed emerging themes of planning, interprofessional supervisor utilization, role clarity and perceived professional limitations from the data. This study found that the IPCS model can provide an innovative alternative to traditional profession specific supervision models and interprofessional education activities, particularly given the climate of increasing student numbers and reduced resources.


Assuntos
Pessoal Administrativo/psicologia , Estágio Clínico , Relações Interprofissionais , Modelos Educacionais , Competência Profissional , Humanos , Entrevistas como Assunto , Equipe de Assistência ao Paciente , Projetos Piloto
2.
J Neurosci ; 34(9): 3419-28, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24573298

RESUMO

The neurotrophin receptor p75(NTR) has been implicated in mediating neuronal apoptosis after injury to the CNS. Despite its frequent induction in pathologic states, there is limited understanding of the mechanisms that regulate p75(NTR) expression after injury. Here, we show that after focal cerebral ischemia in vivo or oxygen-glucose deprivation in organotypic hippocampal slices or neurons, p75(NTR) is rapidly induced. A concomitant induction of proNGF, a ligand for p75(NTR), is also observed. Induction of this ligand/receptor system is pathologically relevant, as a decrease in apoptosis, after oxygen-glucose deprivation, is observed in hippocampal neurons or slices after delivery of function-blocking antibodies to p75(NTR) or proNGF and in p75(NTR) and ngf haploinsufficient slices. Furthermore, a significant decrease in infarct volume was noted in p75(NTR)-/- mice compared with the wild type. We also investigated the regulatory mechanisms that lead to post-ischemic induction of p75(NTR). We demonstrate that induction of p75(NTR) after ischemic injury is independent of transcription but requires active translation. Basal levels of p75(NTR) in neurons are maintained in part by the expression of microRNA miR-592, and an inverse correlation is seen between miR-592 and p75(NTR) levels in the adult brain. After cerebral ischemia, miR-592 levels fall, with a corresponding increase in p75(NTR) levels. Importantly, overexpression of miR-592 in neurons decreases the level of ischemic injury-induced p75(NTR) and attenuates activation of pro-apoptotic signaling and cell death. These results identify miR-592 as a key regulator of p75(NTR) expression and point to a potential therapeutic candidate to limit neuronal apoptosis after ischemic injury.


Assuntos
Apoptose/fisiologia , Regulação da Expressão Gênica/fisiologia , Infarto da Artéria Cerebral Média/patologia , MicroRNAs/metabolismo , Neurônios/fisiologia , Receptores de Fator de Crescimento Neural/metabolismo , Fatores Etários , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Glucose/deficiência , Hipocampo/patologia , Humanos , Hipóxia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , Fator de Crescimento Neural/metabolismo , Precursores de Proteínas/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores de Fator de Crescimento Neural/genética
3.
J Neurosci ; 33(50): 19579-89, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24336722

RESUMO

Loss-of-function mutations of progranulin (PGRN) have been linked to frontotemporal dementia, but little is known about the effects of PGRN deficiency on the brain in health and disease. PGRN has been implicated in neurovascular development, inflammation, and Wnt signaling, a pathway involved in the formation of the blood-brain barrier (BBB). Because BBB alterations and inflammation contribute to ischemic brain injury, we examined the role of PGRN in the brain damage produced by ischemia-reperfusion. PGRN(+/-) and PGRN(-/-) mice underwent middle cerebral artery occlusion (MCAO) with monitoring of cerebral blood flow. Infarct volume and motor deficits were assessed 72 h later. Post-ischemic inflammation was examined by expression of inflammatory genes and flow cytometry. BBB structure and permeability were examined by electron microscopy (EM) and Evans blue (EB) extravasation, respectively. MCAO resulted in ~60% larger infarcts in PGRN(+/-) and PGRN(-/-) mice, an effect independent of hemodynamic factors or post-ischemic inflammation. Rather, massive hemorrhages and post-ischemic BBB disruption were observed, unrelated to degradation of tight junction (TJ) proteins or matrix metalloproteinases (MMPs). By EM, TJ were 30-52% shorter, fewer, and less interlocking, suggesting a weaker seal between endothelial cells. Intracerebral injection of platelet-derived growth factor-CC (PDGF-CC), which increases BBB permeability, resulted in a more severe BBB breakdown in PGRN(+/-) and PGRN(-/-) than wild-type mice. We describe a previously unrecognized involvement of PGRN in the expression of key ultrastructural features of the BBB. Such a novel vasoprotective role of PGRN may contribute to brain dysfunction and damage in conditions associated with reduced PGRN function.


Assuntos
Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Barreira Hematoencefálica/fisiopatologia , Isquemia Encefálica/fisiopatologia , Células Endoteliais/metabolismo , Granulinas , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Knockout , Progranulinas , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia
4.
Stroke ; 45(5): 1460-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24713530

RESUMO

BACKGROUND AND PURPOSE: Obstructive sleep apnea, a condition associated with chronic intermittent hypoxia (CIH), carries an increased risk of stroke. However, CIH has been reported to either increase or decrease brain injury in models of focal cerebral ischemia. The factors determining the differential effects of CIH on ischemic injury and their mechanisms remain unclear. Here, we tested the hypothesis that the intensity of the hypoxic challenge determines the protective or destructive nature of CIH by modulating mitochondrial resistance to injury. METHODS: Male C57Bl/6J mice were exposed to CIH with 10% or 6% O2 for ≤35 days and subjected to transient middle cerebral artery occlusion. Motor deficits and infarct volume were assessed 3 days later. Intraischemic cerebral blood flow was measured by laser-Doppler flowmetry and resting cerebral blood flow by arterial spin labeling MRI. Ca2+-induced mitochondrial depolarization and reactive oxygen species production were evaluated in isolated brain mitochondria. RESULTS: We found that 10% CIH is neuroprotective, whereas 6% CIH exacerbates tissue damage. No differences in resting or intraischemic cerebral blood flow were observed between 6% and 10% CIH. However, 10% CIH reduced, whereas 6% CIH increased, mitochondrial reactive oxygen species production and susceptibility to Ca2+-induced depolarizations. CONCLUSIONS: The influence of CIH on the ischemic brain is dichotomous and can be attributed, in part, to changes in the mitochondrial susceptibility to injury. The findings highlight a previously unappreciated complexity in the effect of CIH on the brain, which needs to be considered in evaluating the neurological effect of conditions associated with cyclic hypoxia.


Assuntos
Circulação Cerebrovascular/fisiologia , Hipóxia/metabolismo , Infarto da Artéria Cerebral Média/fisiopatologia , Mitocôndrias/metabolismo , Animais , Doença Crônica , Modelos Animais de Doenças , Hipóxia/fisiopatologia , Infarto da Artéria Cerebral Média/etiologia , Infarto da Artéria Cerebral Média/patologia , Fluxometria por Laser-Doppler , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo
5.
Stroke ; 44(8): 2284-2291, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23743975

RESUMO

BACKGROUND AND PURPOSE: Loss-of-function mutations of the lipoprotein receptor-related protein-6 (LRP6), a coreceptor in the Wingless-related integration site-ß-catenin prosurvival pathway, have been implicated in myocardial ischemia and neurodegeneration. However, it remains to be established whether LRP6 is also involved in ischemic brain injury. We used LRP6+/- mice to examine the role of this receptor in the mechanisms of focal cerebral ischemia. METHODS: Focal cerebral ischemia was induced by transient occlusion of the middle cerebral artery. Motor deficits and infarct volume were assessed 3 days later. Glycogen-synthase-kinase-3ß (GSK-3ß) phosphorylation was examined by Western blotting with phosphospecific antibodies, and the mitochondrial membrane potential changes induced by Ca2+ were also assessed. RESULTS: LRP6+/- mice have larger stroke and more severe motor deficits, effects that were independent of intraischemic cerebral blood flow, vascular factors, or cytosolic ß-catenin levels. Rather, LRP6 haploinsufficiency increased the activating phosphorylation and decreased the inhibitory phosphorylation of GSK-3ß, a kinase involved in proinflammatory signaling and mitochondrial dysfunction. Accordingly, postischemic inflammatory gene expression was enhanced in LRP6+/- mice. Furthermore, the association of mitochondria with activated GSK-3ß was increased in LRP6+/- mice, resulting in a reduction in the Ca2+ handling ability of mitochondria. The mitochondrial dysfunction was reversed by pharmacological inhibition of GSK-3ß. CONCLUSIONS: LRP6 activates an endogenous neuroprotective pathway that acts independently of ß-catenin by controlling GSK-3ß activity and preventing its deleterious mitochondrial and proinflammatory effects. The findings raise the possibility that emerging treatment strategies for diseases attributable to LRP6 loss-of-function mutations could also lead to new therapeutic avenues for ischemic stroke.


Assuntos
Isquemia Encefálica/prevenção & controle , Encéfalo/metabolismo , Encéfalo/patologia , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/fisiologia , Animais , Comportamento Animal/fisiologia , Encéfalo/fisiopatologia , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Inflamação/genética , Inflamação/metabolismo , Inflamação/prevenção & controle , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/deficiência , Camundongos , Mitocôndrias/genética , Atividade Motora/genética , Fosforilação/genética , Transdução de Sinais/genética , beta Catenina/genética , beta Catenina/metabolismo , beta Catenina/fisiologia
6.
Nurse Educ Pract ; 67: 103547, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36669295

RESUMO

AIM: This project aimed to evaluate student and staff satisfaction with, and perspectives on, changes to delivery and format of the Medication Unit of Competency within a Diploma of Nursing Program. BACKGROUND: Medication safety is an integral component of learning for pre-registration nursing students. The COVID-19 pandemic required rapid changes to be made to the medication competency unit being taught to students within a Diploma of Nursing, pre-registration course. Changes to sequencing of theory, mode of education delivery, class sizes, available resources and learning support were required. DESIGN: A multi-method evaluation process was conducted. The project is reported as per SQUIRE-EDU guidelines. METHODS: Focus groups and survey data were obtained from staff and students in December 2020, to evaluate responses to the changes. Student exam results and the number of learning support consultations accessed were also assessed to identify impact of changes. RESULTS: Staff and student evaluation identified mixed responses but overall, the change in sequence of theory and mode of delivery was positively received. Crude comparisons of final assessment results revealed improved marks compared to the previous cohort. The addition of an online medication resource was utilised by most students. The agility of staff in responding to the challenges was highlighted in the staff focus group and additional, flexible learning support was favourably received by students. CONCLUSIONS: Despite the need for rapid changes being made to the course, positive responses were received from both staff and students. Some students preferred the traditional sequencing of learning as they felt it matched their learning style. An added online resource and extra learning support supported student self-efficacy development of medication competency; however further research is needed to ascertain any associations. The online resource is still being utilised within course curriculum.


Assuntos
COVID-19 , Estudantes de Enfermagem , Humanos , Pandemias , Aprendizagem , Currículo , Estudantes
7.
Stroke ; 43(8): 2229-35, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22700531

RESUMO

BACKGROUND AND PURPOSE: Cerebral ischemia leads to accumulation of ubiquitinated protein aggregates. However, the factors triggering ubiquitination and their impact on the outcome of cerebral ischemia remain poorly understood. Here we investigate the relationship between ubiquitin aggregation and duration of ischemia/reperfusion, infarct volume, and proteasomal activity in a mouse model of focal ischemia. METHODS: Free ubiquitin and ubiquitin aggregate levels were examined by Western blotting in the mouse neocortex and striatum after different periods of ischemia/reperfusion and permanent ischemia induced by middle cerebral artery occlusion. Infarct volumes were measured in thionin-stained brain sections. Proteasome activity was studied by fluorometric peptidase activity assay. RESULTS: Following transient ischemia, ubiquitin aggregates were detected in the ipsilateral neocortex and, to a lesser extent, striatum only after induction of reperfusion. In permanent ischemia, no ubiquitin aggregates were found. Shorter ischemic periods producing no or minimal tissue damage (10-15 minutes) resulted in ubiquitin aggregate levels similar to those produced by ischemia resulting in substantial infarction (30 minutes). Proteasomal impairment was greatest in ischemia without reperfusion, in which no ubiquitin aggregates were detected. CONCLUSIONS: The data demonstrate that reperfusion rather than ischemia leads to the appearance of ubiquitinated aggregates, which form in the absence of major tissue damage and are not correlated with decreased proteasomal peptidase activity. Ubiquitin aggregates may form in potentially viable brain tissue, which may be later recruited into infarction by factors independent of ubiquitination.


Assuntos
Isquemia Encefálica/patologia , Infarto da Artéria Cerebral Média/patologia , Traumatismo por Reperfusão/patologia , Ubiquitina/metabolismo , Animais , Western Blotting , Encéfalo/patologia , Isquemia Encefálica/metabolismo , Corpo Estriado/patologia , Fluorometria , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/patologia , Peptídeo Hidrolases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Traumatismo por Reperfusão/metabolismo , Frações Subcelulares/metabolismo , Frações Subcelulares/patologia
8.
Behav Brain Res ; 432: 113983, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35777551

RESUMO

Stroke continues to be a major cause of mortality globally. Post-stroke treatment is complicated by the heterogenous nature of pathology and the emergence of secondary psychological symptoms are an additional challenge to the recovery process. Poststroke depression (PSD) is a common co-morbidity and is a major impediment to recovery. While selective serotonin reuptake inhibitors (SSRIs) have proven to be clinically efficacious in treating PSD, the pathogenic processes that underlie the manifestation of depressive mood post-stroke remains unclear. Furthermore, the use of SSRIs is associated with risks of intracerebral haemorrhage, so alternative treatment options need to be continuously explored. Exercise has been demonstrated to be beneficial for improving mood in humans and preclinical models of neurological conditions. Little is known of the mood-related benefits of physical exercise post-stroke. Using the middle cerebral artery occlusion (MCAO) mouse model of cerebral ischaemia, we investigated whether behavioural deficits emerge post-MCAO and could be rescued by voluntary wheel-running. We report that MCAO induced hypo-locomotion and anhedonia-related behaviours, with some improvements conferred by wheel-running. Serotonin transporter gene expression was increased in the MCAO hippocampus and frontal cortex, but this increase remained despite wheel-running. Wheel-running associated up-regulation of BDNF gene expression was unaffected in MCAO mice, reflecting conservation of key neuroplasticity molecular pathways. Taken together, our results highlight the need for further research into serotonergic modulation of the affective symptoms of stroke.


Assuntos
Ansiedade , Depressão , Infarto da Artéria Cerebral Média , Condicionamento Físico Animal , Acidente Vascular Cerebral , Animais , Ansiedade/fisiopatologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/fisiopatologia , Modelos Animais de Doenças , Expressão Gênica , Infarto da Artéria Cerebral Média/complicações , Camundongos , Condicionamento Físico Animal/psicologia , Receptores de Serotonina , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico
9.
Sci Rep ; 11(1): 10269, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986303

RESUMO

Hippocampal atrophy is increasingly described in many neurodegenerative syndromes in humans, including stroke and vascular cognitive impairment. However, the progression of brain volume changes after stroke in rodent models is poorly characterized. We aimed to monitor hippocampal atrophy occurring in mice up to 48-weeks post-stroke. Male C57BL/6J mice were subjected to an intraluminal filament-induced middle cerebral artery occlusion (MCAO). At baseline, 3-days, and 1-, 4-, 12-, 24-, 36- and 48-weeks post-surgery, we measured sensorimotor behavior and hippocampal volumes from T2-weighted MRI scans. Hippocampal volume-both ipsilateral and contralateral-increased over the life-span of sham-operated mice. In MCAO-subjected mice, different trajectories of ipsilateral hippocampal volume change were observed dependent on whether the hippocampus contained direct infarction, with a decrease in directly infarcted tissue and an increase in non-infarcted tissue. To further investigate these volume changes, neuronal and glial cell densities were assessed in histological brain sections from the subset of MCAO mice lacking hippocampal infarction. Our findings demonstrate previously uncharacterized changes in hippocampal volume and potentially brain parenchymal cell density up to 48-weeks in both sham- and MCAO-operated mice.


Assuntos
Infarto Encefálico/patologia , Hipocampo/patologia , Animais , Atrofia/patologia , Encéfalo/patologia , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Infarto da Artéria Cerebral Média/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/patologia , Acidente Vascular Cerebral/patologia
10.
Stroke ; 41(5): 898-904, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20360550

RESUMO

BACKGROUND AND PURPOSE: Toll-like receptors (TLRs) and the scavenger receptor CD36 are key molecular sensors for the innate immune response to invading pathogens. However, these receptors may also recognize endogenous "danger signals" generated during brain injury, such as cerebral ischemia, and trigger a maladaptive inflammatory reaction. Indeed, CD36 and TLR2 and 4 are involved in the inflammation and related tissue damage caused by brain ischemia. Because CD36 may act as a coreceptor for TLR2 heterodimers (TLR2/1 or TLR2/6), we tested whether such interaction plays a role in ischemic brain injury. METHODS: The TLR activators FSL-1 (TLR2/6), Pam3 (TLR2/1), or lipopolysaccharide (TLR4) were injected intracerebroventricularly into wild-type or CD36-null mice, and inflammatory gene expression was assessed in the brain. The effect of TLR activators on the infarct produced by transient middle cerebral artery occlusion was also studied. RESULTS: The inflammatory response induced by TLR2/1 activation, but not TLR2/6 or TLR4 activation, was suppressed in CD36-null mice. Similarly, TLR2/1 activation failed to increase infarct volume in CD36-null mice, whereas TLR2/6 or TLR4 activation exacerbated postischemic inflammation and increased infarct volume. In contrast, the systemic inflammatory response evoked by TLR2/6 activation, but not by TLR2/1 activation, was suppressed in CD36-null mice. CONCLUSIONS: In the brain, TLR2/1 signaling requires CD36. The cooperative signaling of TLR2/1 and CD36 is a critical factor in the inflammatory response and tissue damage evoked by cerebral ischemia. Thus, suppression of CD36-TLR2/1 signaling could be a valuable approach to minimize postischemic inflammation and the attendant brain injury.


Assuntos
Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Antígenos CD36/fisiologia , Mediadores da Inflamação/fisiologia , Transdução de Sinais/fisiologia , Receptor 2 Toll-Like/fisiologia , Animais , Isquemia Encefálica/genética , Antígenos CD36/deficiência , Antígenos CD36/genética , Inflamação/genética , Inflamação/metabolismo , Inflamação/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/genética
11.
Sci Rep ; 8(1): 2701, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426953

RESUMO

Protein aggregation critically affects cell viability in neurodegenerative diseases, but whether this also occurs in ischemic brain injury remains elusive. Prior studies report the post-ischemic aggregation of ubiquitin, small ubiquitin-related modifier (SUMO) and ribosomes, however whether other proteins are also affected is unknown. Here we employed a proteomic approach to identify the insoluble, aggregated proteome after cerebral ischemia. Mice underwent transient middle cerebral artery occlusion or sham-surgery. After 1-hour reperfusion, prior to apparent brain injury, mice were sacrificed and detergent-insoluble proteins were obtained and identified by nanoLC-MS/MS. Naturally existing insoluble proteins were determined in sham controls and aggregated proteins after cerebral ischemia/reperfusion were identified. Selected aggregated proteins found by proteomics were biochemically verified and aggregation propensities were studied during ischemia with or without reperfusion. We found that ischemia/reperfusion induces the aggregation of RNA-binding and heat-shock proteins, ubiquitin, SUMO and other proteins involved in cell signalling. RNA-binding proteins constitute the largest group of aggregating proteins in ischemia. These include TDP43, FUS, hnRNPA1, PSF/SFPQ and p54/NONO, all of which have been linked to neurodegeneration associated with amyotrophic lateral sclerosis and frontotemporal dementia. The aggregation of neurodegeneration-related disease proteins in cerebral ischemia unveils a previously unappreciated molecular overlap between neurodegenerative diseases and ischemic stroke.


Assuntos
Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatologia , Animais , Infarto Cerebral , Circulação Cerebrovascular/fisiologia , Hipocampo/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/fisiopatologia , Ataque Isquêmico Transitório , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Artéria Cerebral Média/fisiopatologia , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Agregados Proteicos/fisiologia , Proteômica/métodos , Reperfusão , Traumatismo por Reperfusão/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Acidente Vascular Cerebral/metabolismo , Espectrometria de Massas em Tandem , Ubiquitina/metabolismo
12.
Sci Rep ; 8(1): 6802, 2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700368

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

13.
Curr Med Chem ; 14(26): 2824-30, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18045128

RESUMO

Isoflavones are an important class of phytoestrogens that are found at extrememly high levels in soy. Up until recently, daidzein and genistein were considered to be the most important and hence most studied isoflavones, however more recently attention has shifted to isoflavone metabolies. Equol represents the main active product of daidzein metabolism, produced via specific microflora in the gut. It has a longer half life and greater biological activity, including superior antioxidant activity. Yet, whilst the majority of animals produce equol following soy consumption, as much as 30-50 % of the adult human population cannot. This inability to produce equol in as much as half the population is thought to provide some explanation for the failure of soy to reveal any substantial health benefits in clinical studies. This article will comprehensively review literature investigating the potential cardiovascular benefits of daidzein and its metabolites, paying particular attention to equol. It will focus on the relative vasorelaxant activity, effects on nitric oxide synthase (NOS), antioxidant activity and potential for the treatment and prevention of hypertension and stroke. Findings obtained in both animal and human studies will be reviewed with the hope of gaining an insight into the experimental and clinical importance of equol to the cardiovascular benefits of soy.


Assuntos
Hipertensão/tratamento farmacológico , Isoflavonas/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Antioxidantes , Células Endoteliais/efeitos dos fármacos , Equol , Genisteína/química , Genisteína/metabolismo , Genisteína/farmacologia , Genisteína/uso terapêutico , Humanos , Hipertensão/metabolismo , Isoflavonas/química , Isoflavonas/metabolismo , Isoflavonas/uso terapêutico , Óxido Nítrico Sintase/metabolismo , Canais de Potássio/efeitos dos fármacos , Alimentos de Soja , Acidente Vascular Cerebral/metabolismo , Vasodilatação/efeitos dos fármacos
14.
Brain Res ; 1141: 99-107, 2007 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-17274967

RESUMO

BACKGROUND AND PURPOSE: Equol is the main active intestinal metabolite of the isoflavone daidzein and is postulated to be responsible for the cardiovascular benefits of soy. Cerebral vascular effects of equol are unknown. We compared the vasorelaxant and antioxidant effects of equol and daidzein in carotid and basilar artery of normal and hypertensive rats. EXPERIMENTAL APPROACH: Relaxant responses to equol and daidzein were measured in the isolated carotid artery and in the basilar artery in vivo. Effects of nitric oxide synthase (NOS) inhibition, high extracellular K(+), endothelial removal and gender on responses to equol were investigated in carotid arteries. Antioxidant activity was assessed as the reduction of NADPH-induced superoxide levels. Hypertension was induced using angiotensin II (0.7 mg/kg per day for 14 days). KEY RESULTS: In normotensive rats, equol displayed vasorelaxant activity similar to daidzein. The relaxant effect of equol was independent of an intact endothelium, NOS activity, K(+) channels and gender. In the basilar artery, where superoxide levels are higher, equol exerted weak antioxidant effects, whereas effects of daidzein were insignificant. During hypertension, equol-induced vasorelaxation was preserved, whereas relaxant responses to daidzein were impaired. CONCLUSIONS AND IMPLICATIONS: Equol possesses substantial vasodilator and weak antioxidant activity in cerebral arteries, with similar activity to daidzein, whereas in hypertension the vasorelaxant response to equol, but not daidzein, is preserved. However, daidzein possesses comparable direct vascular effects with equol, without the need for intestinal conversion to equol. Nevertheless, equol may represent a more useful therapeutic agent during cerebral vascular disease.


Assuntos
Antioxidantes/farmacologia , Artérias Carótidas/efeitos dos fármacos , Artérias Cerebrais/efeitos dos fármacos , Isoflavonas/farmacologia , Análise de Variância , Angiotensina II , Animais , Antioxidantes/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Equol , Feminino , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Hipertensão/patologia , Técnicas In Vitro , Masculino , Fitoestrógenos/farmacologia , Ratos , Superóxidos/metabolismo , Vasodilatação/efeitos dos fármacos
15.
Antioxid Redox Signal ; 22(2): 149-60, 2015 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24328757

RESUMO

SIGNIFICANCE: The brain has high energetic requirements and is therefore highly dependent on adequate cerebral blood supply. To compensate for dangerous fluctuations in cerebral perfusion, the circulation of the brain has evolved intrinsic safeguarding measures. RECENT ADVANCES AND CRITICAL ISSUES: The vascular network of the brain incorporates a high degree of redundancy, allowing the redirection and redistribution of blood flow in the event of vascular occlusion. Furthermore, active responses such as cerebral autoregulation, which acts to maintain constant cerebral blood flow in response to changing blood pressure, and functional hyperemia, which couples blood supply with synaptic activity, allow the brain to maintain adequate cerebral perfusion in the face of varying supply or demand. In the presence of stroke risk factors, such as hypertension and diabetes, these protective processes are impaired and the susceptibility of the brain to ischemic injury is increased. One potential mechanism for the increased injury is that collateral flow arising from the normally perfused brain and supplying blood flow to the ischemic region is suppressed, resulting in more severe ischemia. FUTURE DIRECTIONS: Approaches to support collateral flow may ameliorate the outcome of focal cerebral ischemia by rescuing cerebral perfusion in potentially viable regions of the ischemic territory.


Assuntos
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Animais , Humanos , Hipertensão/metabolismo , Ratos , Fatores de Risco , Acidente Vascular Cerebral/metabolismo , Suínos
16.
J Cereb Blood Flow Metab ; 35(1): 1-5, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25352045

RESUMO

Protein modifications cooperatively act to protect the proteome from cellular stress. Focal cerebral ischemia increases protein ubiquitination, resulting in formation of ubiquitin-rich aggregates. A concurrent elevation in small ubiquitin-related modifier (SUMO)-conjugated proteins has also been reported, but a potential connection to ubiquitin remains unexplored. Here we show that SUMO2/3 conjugates are present in postischemic ubiquitin-rich aggregates, physically associated with ubiquitin. The coaggregation of SUMO2/3 and ubiquitin is induced rapidly after ischemia, depends on reperfusion, and is also observed in the absence of ischemic damage. The association between SUMO and ubiquitin suggests overlapping functional roles after ischemia/reperfusion.


Assuntos
Infarto da Artéria Cerebral Média/metabolismo , Neocórtex/metabolismo , Agregados Proteicos , Proteína SUMO-1/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Ubiquitina/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Eletroforese em Gel de Poliacrilamida , Imunoprecipitação , Infarto da Artéria Cerebral Média/patologia , Masculino , Camundongos Endogâmicos C57BL , Neocórtex/patologia , Traumatismo por Reperfusão/metabolismo
17.
Nat Commun ; 6: 6442, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25778803

RESUMO

Intracellular nucleotide binding and oligomerization domain (NOD) receptors recognize antigens including bacterial peptidoglycans and initiate immune responses by triggering the production of pro-inflammatory cytokines through activating NF-κB and MAP kinases. Receptor interacting protein kinase 2 (RIPK2) is critical for NOD-mediated NF-κB activation and cytokine production. Here we develop and characterize a selective RIPK2 kinase inhibitor, WEHI-345, which delays RIPK2 ubiquitylation and NF-κB activation downstream of NOD engagement. Despite only delaying NF-κB activation on NOD stimulation, WEHI-345 prevents cytokine production in vitro and in vivo and ameliorates experimental autoimmune encephalomyelitis in mice. Our study highlights the importance of the kinase activity of RIPK2 for proper immune responses and demonstrates the therapeutic potential of inhibiting RIPK2 in NOD-driven inflammatory diseases.


Assuntos
Citocinas/metabolismo , Inflamação/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Trifosfato de Adenosina/química , Animais , Cromatografia Líquida , Encefalomielite Autoimune Experimental/genética , Feminino , Humanos , Sistema Imunitário , Concentração Inibidora 50 , Interferon gama/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , NF-kappa B/metabolismo , Ligação Proteica , Conformação Proteica , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/antagonistas & inibidores , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Espectrometria de Massas em Tandem , Ubiquitina/metabolismo
18.
J Child Adolesc Psychiatr Nurs ; 25(1): 4-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22299801

RESUMO

TOPIC: The article focuses on the use of motivational interviewing (MI) as an intervention with adolescent patients in mental health treatment settings. PURPOSE: The aim of the study is to review MI theory and principles, and inform advanced practice nurses about the suitability of this intervention for adolescents in psychiatric care settings. For this population, MI may be effective in encouraging behavioral change consistent with a harm reduction approach. SOURCES USED: Published literature on the topic, including randomized controlled trials, was used in this study. CONCLUSIONS: Nurse practitioners in psychiatry are especially well suited to engage their adolescent patients in MI based on their role as patient advocates and the developmental framework within which they practice. Further studies are needed to evaluate the efficacy of this approach with the adolescent psychiatric population.


Assuntos
Motivação , Profissionais de Enfermagem , Enfermagem Psiquiátrica , Adolescente , Humanos , Entrevistas como Assunto
19.
Methods Mol Biol ; 793: 195-209, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21913102

RESUMO

Ischemic stroke is among the leading causes of mortality and long-term disability in the western world. Despite enormous research activities in the last decades, current therapeutic options for acute stroke patients are still very limited. Reliable and realistic in vivo animal models represent sine qua non for -successful translation from bench to bedside. To date, several animal models of focal and global cerebral ischemia have been developed to mimic the clinical situation in humans as accurately as possible. This chapter focuses on models of focal cerebral ischemia, in particular on the most commonly used model: the intraluminal filament model of middle cerebral artery occlusion. The main objective is to provide a detailed instruction manual for researchers interested in learning this technique.


Assuntos
Modelos Animais de Doenças , Infarto da Artéria Cerebral Média , Animais , Cateterismo , Artéria Femoral/patologia , Artéria Femoral/fisiopatologia , Artéria Femoral/cirurgia , Temperatura Alta , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Infarto da Artéria Cerebral Média/cirurgia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nylons , Suturas
20.
Naunyn Schmiedebergs Arch Pharmacol ; 383(5): 471-81, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21359968

RESUMO

Indoleamine 2,3-dioxygenases-1 (Ido1) and -2 initiate the kynurenine pathway of tryptophan metabolism. In addition to the established immune regulatory effects of Ido1 and the ability of nitric oxide to regulate Ido1 activity, it is now also known that Ido1-mediated metabolism of tryptophan to kynurenine can modulate vascular tone. Ido activity is reportedly elevated in stroke patients and correlates with increased risk of death. Thus, the present goals were to test whether, following cerebral ischaemia, Ido activity and cerebrovascular Ido1 expression are altered and whether expression of Ido1 contributes to stroke outcome. Transient cerebral ischaemia was induced in wild-type and Ido1 gene-deficient (Ido1 (-/-)) mice. Mice were pre-treated with vehicle, the Ido1 inhibitor, 1-methyl-D-tryptophan (1-MT; 50 mg/kg i.p.) or the inducible nitric oxide synthase (Nos2) inhibitor, aminoguanidine (AG, 100 mg/kg i.p.). At 24 h, neurological function, brain infarct size and swelling were assessed. In addition, Ido activity was estimated by plasma kynurenine and tryptophan, and Ido1 expression was examined in cerebral arterioles. Cerebral ischaemia-reperfusion in wild-type mice increased Ido activity and its expression in cerebral arterioles. Ido1 (-/-) and 1-MT-treated wild-type mice had lower Ido activity but similar post-stroke neurological function and similar total brain infarct volume and swelling, relative to control mice. Inhibition of Nos2 with AG also did not affect Ido activity or outcome following stroke. This study provides molecular and pharmacological evidence that the expression and the activity of Ido1 increase following stroke. However, such Ido1 expression does not appear to affect overall outcome following acute ischaemic stroke, and furthermore, a regulatory role of Nos2-derived nitric oxide on Ido activity following cerebral ischaemia-reperfusion appears unlikely.


Assuntos
Arteríolas/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase , Ataque Isquêmico Transitório/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Guanidinas/farmacologia , Imuno-Histoquímica , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/fisiologia , Ataque Isquêmico Transitório/complicações , Ataque Isquêmico Transitório/fisiopatologia , Cinurenina/sangue , Camundongos , Camundongos Knockout , Atividade Motora , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/fisiopatologia , Triptofano/análogos & derivados , Triptofano/sangue , Triptofano/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA