Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Med Res Methodol ; 22(1): 228, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35971069

RESUMO

BACKGROUND: Platform trials can evaluate the efficacy of several experimental treatments compared to a control. The number of experimental treatments is not fixed, as arms may be added or removed as the trial progresses. Platform trials are more efficient than independent parallel group trials because of using shared control groups. However, for a treatment entering the trial at a later time point, the control group is divided into concurrent controls, consisting of patients randomised to control when that treatment arm is in the platform, and non-concurrent controls, patients randomised before. Using non-concurrent controls in addition to concurrent controls can improve the trial's efficiency by increasing power and reducing the required sample size, but can introduce bias due to time trends. METHODS: We focus on a platform trial with two treatment arms and a common control arm. Assuming that the second treatment arm is added at a later time, we assess the robustness of recently proposed model-based approaches to adjust for time trends when utilizing non-concurrent controls. In particular, we consider approaches where time trends are modeled either as linear in time or as a step function, with steps at time points where treatments enter or leave the platform trial. For trials with continuous or binary outcomes, we investigate the type 1 error rate and power of testing the efficacy of the newly added arm, as well as the bias and root mean squared error of treatment effect estimates under a range of scenarios. In addition to scenarios where time trends are equal across arms, we investigate settings with different time trends or time trends that are not additive in the scale of the model. RESULTS: A step function model, fitted on data from all treatment arms, gives increased power while controlling the type 1 error, as long as the time trends are equal for the different arms and additive on the model scale. This holds even if the shape of the time trend deviates from a step function when patients are allocated to arms by block randomisation. However, if time trends differ between arms or are not additive to treatment effects in the scale of the model, the type 1 error rate may be inflated. CONCLUSIONS: The efficiency gained by using step function models to incorporate non-concurrent controls can outweigh potential risks of biases, especially in settings with small sample sizes. Such biases may arise if the model assumptions of equality and additivity of time trends are not satisfied. However, the specifics of the trial, scientific plausibility of different time trends, and robustness of results should be carefully considered.


Assuntos
Tamanho da Amostra , Viés , Humanos
2.
Comput Stat Data Anal ; 174: 107407, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35698662

RESUMO

The design of sequential experiments and, in particular, randomised controlled trials involves a trade-off between operational characteristics such as statistical power, estimation bias and patient benefit. The family of randomisation procedures referred to as Constrained Randomised Dynamic Programming (CRDP), which is set in the Bayesian decision-theoretic framework, can be used to balance these competing objectives. A generalisation and novel interpretation of CRDP is proposed to highlight its inherent flexibility to adapt to a variety of practicalities and align with individual trial objectives. CRDP, as with most response-adaptive randomisation procedures, hinges on the limiting assumption of patient responses being available before allocation of the next patient. This forms one of the greatest barriers to their implementation in practice which, despite being an important research question, has not received a thorough treatment. Therefore, motivated by the existing gap between the theory of response-adaptive randomisation (which is abundant with proposed methods in the immediate response setting) and clinical practice (in which responses are typically delayed), the performance of CRDP in the presence of fixed and random delays is evaluated. Simulation results show that CRDP continues to offer patient benefit gains over alternative procedures and is relatively robust to delayed responses. To compensate for a fixed delay, a method which adjusts the time horizon used in the optimisation objective is proposed and its performance illustrated.

3.
Comput Stat Data Anal ; 113: 136-153, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28630525

RESUMO

Development of treatments for rare diseases is challenging due to the limited number of patients available for participation. Learning about treatment effectiveness with a view to treat patients in the larger outside population, as in the traditional fixed randomised design, may not be a plausible goal. An alternative goal is to treat the patients within the trial as effectively as possible. Using the framework of finite-horizon Markov decision processes and dynamic programming (DP), a novel randomised response-adaptive design is proposed which maximises the total number of patient successes in the trial and penalises if a minimum number of patients are not recruited to each treatment arm. Several performance measures of the proposed design are evaluated and compared to alternative designs through extensive simulation studies using a recently published trial as motivation. For simplicity, a two-armed trial with binary endpoints and immediate responses is considered. Simulation results for the proposed design show that: (i) the percentage of patients allocated to the superior arm is much higher than in the traditional fixed randomised design; (ii) relative to the optimal DP design, the power is largely improved upon and (iii) it exhibits only a very small bias and mean squared error of the treatment effect estimator. Furthermore, this design is fully randomised which is an advantage from a practical point of view because it protects the trial against various sources of bias. As such, the proposed design addresses some of the key issues that have been suggested as preventing so-called bandit models from being implemented in clinical practice.

4.
Trials ; 24(1): 640, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798805

RESUMO

In the UK, the Medicines and Healthcare products Regulatory Agency consulted on proposals "to improve and strengthen the UK clinical trials legislation to help us make the UK the best place to research and develop safe and innovative medicines". The purpose of the consultation was to help finalise the proposals and contribute to the drafting of secondary legislation. We discussed these proposals as members of the Trials Methodology Research Partnership Adaptive Designs Working Group, which is jointly funded by the Medical Research Council and the National Institute for Health and Care Research. Two topics arose frequently in the discussion: the emphasis on legislation, and the absence of questions on data sharing. It is our opinion that the proposals rely heavily on legislation to change practice. However, clinical trials are heterogeneous, and as a result some trials will struggle to comply with all of the proposed legislation. Furthermore, adaptive design clinical trials are even more heterogeneous than their non-adaptive counterparts, and face more challenges. Consequently, it is possible that increased legislation could have a greater negative impact on adaptive designs than non-adaptive designs. Overall, we are sceptical that the introduction of legislation will achieve the desired outcomes, with some exceptions. Meanwhile the topic of data sharing - making anonymised individual-level clinical trial data available to other investigators for further use - is entirely absent from the proposals and the consultation in general. However, as an aspect of the wider concept of open science and reproducible research, data sharing is an increasingly important aspect of clinical trials. The benefits of data sharing include faster innovation, improved surveillance of drug safety and effectiveness and decreasing participant exposure to unnecessary risk. There are already a number of UK-focused documents that discuss and encourage data sharing, for example, the Concordat on Open Research Data and the Medical Research Council's Data Sharing Policy. We strongly suggest that data sharing should be the norm rather than the exception, and hope that the forthcoming proposals on clinical trials invite discussion on this important topic.


Assuntos
Disseminação de Informação , Projetos de Pesquisa , Humanos , Atenção à Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA