RESUMO
OBJECTIVE: In response to advancing clinical practice guidelines regarding concussion management, service members, like athletes, complete a baseline assessment prior to participating in high-risk activities. While several studies have established test stability in athletes, no investigation to date has examined the stability of baseline assessment scores in military cadets. The objective of this study was to assess the test-retest reliability of a baseline concussion test battery in cadets at U.S. Service Academies. METHODS: All cadets participating in the Concussion Assessment, Research, and Education (CARE) Consortium investigation completed a standard baseline battery that included memory, balance, symptom, and neurocognitive assessments. Annual baseline testing was completed during the first 3 years of the study. A two-way mixed-model analysis of variance (intraclass correlation coefficent (ICC)3,1) and Kappa statistics were used to assess the stability of the metrics at 1-year and 2-year time intervals. RESULTS: ICC values for the 1-year test interval ranged from 0.28 to 0.67 and from 0.15 to 0.57 for the 2-year interval. Kappa values ranged from 0.16 to 0.21 for the 1-year interval and from 0.29 to 0.31 for the 2-year test interval. Across all measures, the observed effects were small, ranging from 0.01 to 0.44. CONCLUSIONS: This investigation noted less than optimal reliability for the most common concussion baseline assessments. While none of the assessments met or exceeded the accepted clinical threshold, the effect sizes were relatively small suggesting an overlap in performance from year-to-year. As such, baseline assessments beyond the initial evaluation in cadets are not essential but could aid concussion diagnosis.
Assuntos
Traumatismos em Atletas , Concussão Encefálica , Esportes , Atletas , Traumatismos em Atletas/complicações , Concussão Encefálica/diagnóstico , Concussão Encefálica/etiologia , Humanos , Testes Neuropsicológicos , Reprodutibilidade dos Testes , Estados Unidos , UniversidadesRESUMO
Developmental dysplasia of the hip is a common musculoskeletal condition in newborns. Infants with developmental dysplasia of the hip, whether treated or untreated, have a higher incidence of early-onset hip osteoarthritis in adulthood. Evidence to support universal screening by physical examination or ultrasonography is limited and often conflicting. The U.S. Preventive Services Task Force found insufficient evidence that screening for developmental dysplasia of the hip prevents adverse outcomes. Physical examination screening is recommended by the American Academy of Pediatrics and the Pediatric Orthopaedic Society of North America. These organizations recommend use of the Ortolani and Barlow maneuvers to screen infants up to three months of age. Several recent studies support starting assessment for limited hip abduction at eight weeks of age, which is the most sensitive test for developmental dysplasia of the hip from this age on. Infants with overtly dislocated or dislocatable hips should be referred to an orthopedist on a priority basis at the time of diagnosis. Infants with equivocal hip examination findings at birth can be reexamined in two weeks. If there is subluxation or dislocation at the follow-up examination, referral should be made at that time. If the examination findings are still equivocal, the infant can undergo ultrasonography of the hips or be reexamined every few weeks through the first six weeks of life. Although equivocal findings commonly resolve spontaneously, infants with persistent equivocal findings of developmental dysplasia of the hip longer than six weeks should be evaluated by an orthopedist. Treatment generally involves flexion-abduction splinting. The benefits of treatment are unclear, and there are risks to treatment, most notably an increased occurrence of avascular necrosis of the femoral head.
Assuntos
Luxação Congênita de Quadril , Manipulação Ortopédica , Triagem Neonatal/métodos , Luxação Congênita de Quadril/complicações , Luxação Congênita de Quadril/diagnóstico , Luxação Congênita de Quadril/fisiopatologia , Luxação Congênita de Quadril/terapia , Humanos , Lactente , Recém-Nascido , Manipulação Ortopédica/instrumentação , Manipulação Ortopédica/métodos , Osteoartrite do Quadril/etiologia , Osteoartrite do Quadril/prevenção & controle , Pediatria/métodos , Guias de Prática Clínica como Assunto , Serviços Preventivos de Saúde/métodos , Serviços Preventivos de Saúde/estatística & dados numéricos , ContençõesRESUMO
Identification of genetic alleles associated with both Alzheimer's disease (AD) and concussion severity/recovery could help explain the association between concussion and elevated dementia risk. However, there has been little investigation into whether AD risk genes associate with concussion severity/recovery, and the limited findings are mixed. We used AD polygenic risk scores (PRS) and APOE genotypes to investigate any such associations in the NCAA-DoD Grand Alliance CARE Consortium (CARE) dataset. We assessed six outcomes in 931 total participants. The outcomes were two concussion recovery measures (number of days to asymptomatic status, number of days to return to play (RTP)) and four concussion severity measures (scores on SAC and BESS, SCAT symptom severity, and total number of symptoms). We calculated PRS using a published score [1] and performed multiple linear regression (MLR) to assess the relationship of PRS with the outcomes. We also used t-tests and chi-square tests to examine outcomes by APOE genotype, and MLR to analyze outcomes in European and African genetic ancestry subgroups. Higher PRS was associated with longer injury to RTP in the normal RTP (<24 days) subgroup ( p = 0.024), and one standard deviation increase in PRS resulted in a 9.89 hour increase to the RTP interval. There were no other consistently significant effects, suggesting that high AD genetic risk is not strongly associated with more severe concussions or poor recovery in young adults. Future studies should attempt to replicate these findings in larger samples with longer follow-up using PRS calculated from diverse populations.
RESUMO
BACKGROUND: Timely and appropriate medical care after concussion presents a difficult public health problem. Concussion identification and treatment rely heavily on self-report, but more than half of concussions go unreported or are reported after a delay. If incomplete self-report increases exposure to harm, blood biomarkers may objectively indicate this neurobiological dysfunction. PURPOSE/HYPOTHESIS: The purpose of this study was to compare postconcussion biomarker levels between individuals with different previous concussion diagnosis statuses and care-seeking statuses. It was hypothesized that individuals with undiagnosed concussions and poorer care seeking would show altered biomarker profiles. STUDY DESIGN: Cohort study; Level of evidence, 3. METHODS: Blood samples were collected from 287 military academy cadets and collegiate athletes diagnosed with concussion in the Advanced Research Core of the Concussion Assessment, Research and Education Consortium. The authors extracted each participant's self-reported previous concussion diagnosis status (no history, all diagnosed, ≥1 undiagnosed) and whether they had delayed or immediate symptom onset, symptom reporting, and removal from activity after the incident concussion. The authors compared the following blood biomarkers associated with neural injury between previous concussion diagnosis status groups and care-seeking groups: glial fibrillary acidic protein, ubiquitin c-terminal hydrolase-L1 (UCH-L1), neurofilament light chain (NF-L), and tau protein, captured at baseline, 24 to 48 hours, asymptomatic, and 7 days after unrestricted return to activity using tests of parallel profiles. RESULTS: The undiagnosed previous concussion group (n = 21) had higher levels of NF-L at 24- to 48-hour and asymptomatic time points relative to all diagnosed (n = 72) or no previous concussion (n = 194) groups. For those with delayed removal from activity (n = 127), UCH-L1 was lower at 7 days after return to activity than that for athletes immediately removed from activity (n = 131). No other biomarker differences were observed. CONCLUSION: Individuals with previous undiagnosed concussions or delayed removal from activity showed some different biomarker levels after concussion and after clinical recovery, despite a lack of baseline differences. This may indicate that poorer care seeking can create neurobiological differences in the concussed brain.
Assuntos
Concussão Encefálica , Militares , Humanos , Estudos de Coortes , Concussão Encefálica/diagnóstico , Concussão Encefálica/terapia , Atletas , BiomarcadoresRESUMO
BACKGROUND: The endorsement of symptoms upon initiation of a graduated return-to-activity (GRTA) protocol has been associated with prolonged protocols. It is unclear whether there are specific symptom clusters affecting protocol durations. PURPOSE: To describe the endorsement of specific concussion symptom clusters at GRTA protocol initiation and examine the association between symptom cluster endorsement and GRTA protocol duration. STUDY DESIGN: Cohort study; Level of evidence, 2. METHODS: This study was conducted among cadets enrolled at 3 US service academies. Participants completed an evaluation upon GRTA protocol initiation. Participants endorsing symptoms were binarized based on 6 symptom clusters (cognitive, emotional, insomnia, physical, sensitivity, and ungrouped). The primary outcome of interest was GRTA protocol duration based on symptom cluster endorsement severity. Prevalence rates were calculated to describe symptom cluster endorsement. Kaplan-Meier survival estimates and univariate and multivariable Cox proportional hazards regression models were calculated for all 6 symptom clusters to estimate GRTA protocol duration while controlling for significant covariates. RESULTS: Data from 961 concussed participants were analyzed. Of these, 636 participants were asymptomatic upon GRTA protocol initiation. Among the 325 symptomatic participants, the physical symptom cluster (80%) was most endorsed, followed by the cognitive (29%), insomnia (23%), ungrouped (19%), sensitivity (15%), and emotional (9%) clusters. Univariate results revealed a significant association between endorsing cognitive (hazard ratio [HR], 0.79; p = .001), physical (HR, 0.84; p < .001), insomnia (HR, 0.83; p = .013), sensitivity (HR, 0.70; p < .001), and ungrouped (HR, 0.75; p = .005) symptom clusters and GRTA protocol duration. Endorsing physical (HR, 0.84; p < .001) and sensitivity (HR, 0.81; p = .036) clusters maintained a significant association with GRTA protocol duration in the multivariable models. CONCLUSION: Participants endorsing physical or sensitivity symptom clusters displayed GRTA protocols prolonged by 16% to 19% compared with participants not endorsing that respective cluster after controlling for significant covariates.
Assuntos
Traumatismos em Atletas , Concussão Encefálica , Distúrbios do Início e da Manutenção do Sono , Humanos , Estados Unidos/epidemiologia , Síndrome , Traumatismos em Atletas/diagnóstico , Estudos de Coortes , Distúrbios do Início e da Manutenção do Sono/etiologia , Distúrbios do Início e da Manutenção do Sono/complicações , Concussão Encefálica/diagnóstico , CogniçãoRESUMO
BACKGROUND: Approximately half of concussions go undisclosed and therefore undiagnosed. Among diagnosed concussions, 51% to 64% receive delayed medical care. Understanding the influence of undiagnosed concussions and delayed medical care would inform medical and education practices. PURPOSE: To compare postconcussion longitudinal clinical outcomes among (1) individuals with no concussion history, all previous concussions diagnosed, and ≥1 previous concussion undiagnosed, as well as (2) those who have delayed versus immediate symptom onset, symptom reporting, and removal from activity after concussion. STUDY DESIGN: Cohort study; Level of evidence, 2. METHODS: Participants included 2758 military academy cadets and intercollegiate athletes diagnosed with concussion in the CARE Consortium. We determined (1) each participant's previous concussion diagnosis status self-reported at baseline (no history, all diagnosed, ≥1 undiagnosed) and (2) whether the participant had delayed or immediate symptom onset, symptom reporting, and removal from activity. We compared symptom severities, cognition, balance, and recovery duration at baseline, 24 to 48 hours, date of asymptomatic status, and date of unrestricted return to activity using tests of parallel profiles. RESULTS: The ≥1 undiagnosed concussion group had higher baseline symptom burdens (P < .001) than the other 2 groups and poorer baseline verbal memory performance (P = .001) than the all diagnosed group; however, they became asymptomatic and returned to activity sooner than those with no history. Cadets/athletes who delayed symptom reporting had higher symptom burdens 24 to 48 hours after injury (mean ± SE; delayed, 28.8 ± 0.8; immediate, 20.6 ± 0.7), took a median difference of 2 days longer to become asymptomatic, and took 3 days longer to return to activity than those who had immediate symptom reporting. For every 30 minutes of continued participation after injury, days to asymptomatic status increased 8.1% (95% CI, 0.3%-16.4%). CONCLUSION: Clinicians should expect that cadets/athletes who delay reporting concussion symptoms will have acutely higher symptom burdens and take 2 days longer to become asymptomatic. Educational messaging should emphasize the clinical benefits of seeking immediate care for concussion-like symptoms.
Assuntos
Traumatismos em Atletas , Concussão Encefálica , Humanos , Traumatismos em Atletas/diagnóstico , Estudos de Coortes , Testes Neuropsicológicos , Concussão Encefálica/diagnóstico , Concussão Encefálica/terapia , Atletas , Transtornos da MemóriaRESUMO
BACKGROUND: Current consensus and position statements recommend that concussed patients be asymptomatic upon the initiation of the graduated return to activity (RTA) protocol. However, a significant number of concussed patients are beginning their RTA protocols while endorsing symptoms. PURPOSE: To characterize symptom endorsement at the beginning of the RTA protocol and examine the association between symptom endorsement and RTA protocol duration in service academy cadets. STUDY DESIGN: Cohort study; Level of evidence, 2. METHODS: A prospective cohort study was conducted with cadets at 3 US service academies. Postconcussion symptom inventories were recorded upon the initiation of an RTA protocol. The Sport Concussion Assessment Tool Symptom Inventory was used to classify participants into 3 groups (0 symptoms, 1 symptom, and ≥2 symptoms) upon the initiation of the RTA protocol. The primary outcome of interest was RTA protocol duration. Kaplan-Meier survival estimates were calculated to estimate RTA protocol duration by symptom endorsement, sex, varsity status, academic break, and time to graduated RTA initiation. Univariate and multivariable Cox proportional hazards models were used to estimate the association between symptom endorsement at the initiation of the RTA protocol and RTA protocol duration (α < .05). RESULTS: Data were analyzed from 966 concussed cadets (36% women). Headache (42%) and faintness/dizziness (44%) were the most commonly endorsed symptoms on the Sport Concussion Assessment Tool-Third Edition and the Brief Symptom Inventory-18, respectively. Univariate results revealed a significant association between endorsing ≥2 symptoms and RTA protocol duration. In the multivariable model, endorsing ≥2 symptoms maintained a statistically significant association with RTA protocol duration. Significant associations were observed between RTA protocol duration and nonvarsity status (27% longer), women (15% longer), academic breaks (70% longer), and time to the initiation of the RTA protocol (1.1% longer daily incremental increase) after controlling for covariates. CONCLUSION: Symptom endorsement at the initiation of an RTA protocol was associated with RTA protocol duration. Cadets who had returned to preinjury baseline symptom burden or improved from baseline symptom burden and endorsed ≥2 symptoms at the initiation of the RTA protocol took longer to RTA.
Assuntos
Traumatismos em Atletas , Concussão Encefálica , Síndrome Pós-Concussão , Traumatismos em Atletas/complicações , Traumatismos em Atletas/diagnóstico , Concussão Encefálica/complicações , Concussão Encefálica/diagnóstico , Estudos de Coortes , Feminino , Humanos , Masculino , Síndrome Pós-Concussão/diagnóstico , Estudos ProspectivosRESUMO
Sport-related concussions can result from a single high magnitude impact that generates concussive symptoms, repeated subconcussive head impacts aggregating to generate concussive symptoms, or a combined effect from the two mechanisms. The array of symptoms produced by these mechanisms may be clinically interpreted as a sport-related concussion. It was hypothesized that head impact exposure resulting in concussion is influenced by severity, total number, and frequency of subconcussive head impacts. The influence of total number and magnitude of impacts was previously explored, but frequency was investigated to a lesser degree. In this analysis, head impact frequency was investigated over a new metric called 'time delta', the time difference from the first recorded head impact of the day until the concussive impact. Four exposure metrics were analyzed over the time delta to determine whether frequency of head impact exposure was greater for athletes on their concussion date relative to other dates of contact participation. Those metrics included head impact frequency, head impact accrual rate, risk weighted exposure (RWE), and RWE accrual rate. Athletes experienced an elevated median number of impacts, RWE, and RWE accrual rate over the time delta on their concussion date compared to non-injury sessions. This finding suggests elevated frequency of head impact exposure on the concussion date compared to other dates that may precipitate the onset of concussion.
Assuntos
Traumatismos em Atletas , Concussão Encefálica , Futebol Americano , Humanos , Futebol Americano/lesões , Concussão Encefálica/diagnóstico , Atletas , Traumatismos em Atletas/diagnósticoRESUMO
BACKGROUND: COVID-19 is a severe respiratory virus that spreads via person-to-person contact through respiratory droplets. Since being declared a pandemic in early March 2020, the World Health Organization had yet to release guidelines regarding the return of college or professional sports for the 2020-2021 season. PURPOSE: To survey the head orthopedic surgeons and primary care team physicians for the National Collegiate Athletic Association (NCAA) Football Bowl Subdivision (FBS) football teams so as to gauge the management of common COVID-19 issues for the fall 2020 college football season. STUDY DESIGN: Cross-sectional study. METHODS: The head team orthopaedic surgeons and primary care physicians for all 130 FBS football teams were surveyed regarding their opinions on the management of college football during the COVID-19 pandemic. A total of 30 questions regarding testing, return-to-play protocol, isolating athletes, and other management issues were posed via email survey sent on June 5, 2020. RESULTS: Of the 210 team physicians surveyed, 103 (49%) completed the questionnaire. Overall, 36.9% of respondents felt that it was unsafe for college athletes to return to playing football during fall 2020. While the majority of football programs (96.1%) were testing athletes for COVID-19 as they returned to campus, only 78.6% of programs required athletes to undergo a mandatory quarantine period before resuming involvement in athletic department activities. Of the programs that were quarantining their players upon return to campus, 20% did so for 1 week, 20% for 2 weeks, and 32.9% quarantined their athletes until they had a negative COVID-19 test. CONCLUSION: While US Centers for Disease Control and Prevention guidelines evolve and geographic regions experience a range of COVID-19 infections, determining a universal strategy for return to socialization and participation in sports remains a challenge. The current study highlighted areas of consensus and strong agreement, but the results also demonstrated a need for clarity and consistency in operations, leadership, and guidance for medical professionals in multiple areas as they attempt to safely mitigate risk for college football players amid the COVID-19 pandemic.
RESUMO
INTRODUCTION: Concussion has become the signature injury facing the U.S. military. However, little is understood about the relationship between military fitness and concussion recovery. The current study examined the recoveries of cadets at a U.S. Service Academy to determine whether preinjury physical fitness improved recovery and whether recovery was associated with post-injury physical fitness measures. METHODS: Participants were enrolled in a longitudinal study of concussion. Aerobic Fitness Test (AFT) and Physical Fitness Test (PFT) data were used to estimate cadet fitness. Survival analysis evaluated significant estimators of concussion recovery time. Linear regression models were used to explore the relationship between recovery duration and change in physical fitness scores. RESULTS: Between 2014 and 2017, 307 (n = 70; 22.80% Women) cadets who had sustained a concussion were enrolled. Preinjury physical fitness was not significantly associated with recovery duration (P > .05). Men and intercollegiate cadets took fewer days to reach recovery milestones. Compared to women, men had greater decrements in the Aerobic Fitness Test total score (P < .05) and increased 1.5-mile time postconcussion (P < .05). Women had greater decreases in push-ups postconcussion compared to males (P < .05). There was a trend for a negative association between days until asymptomatic and change in the Physical Fitness Test score (P = .07). CONCLUSION: Preconcussion physical fitness levels do not appear to impact concussion recovery time among a highly physically fit cohort. Possible methods to reduce the effect of symptom duration on strength-related physical fitness should be investigated along with evaluating reductions in strength as a possible mechanism for postconcussion injury risk.
RESUMO
OBJECTIVE: Since concussion is the most common injury in ice hockey, the objective of the current study was to elucidate risk factors, specific mechanisms, and clinical presentations of concussion in men's and women's ice hockey. METHODS: Ice hockey players from 5 institutions participating in the Concussion Assessment, Research, and Education Consortium were eligible for the current study. Participants who sustained a concussion outside of this sport were excluded. There were 332 (250 males, 82 females) athletes who participated in ice hockey, and 47 (36 males, 11 females) who sustained a concussion. RESULTS: Previous concussion (odds ratio (OR)â¯=â¯2.00; 95% confidence interval (95% CI): 1.02â3.91) was associated with increased incident concussion odds, while wearing a mouthguard was protective against incident concussion (ORâ¯=â¯0.43; 95%CI: 0.22â0.85). Overall, concussion mechanisms did not significantly differ between sexes. There were specific differences in how concussions presented clinically across male and female ice hockey players, however. Females (9.09%) were less likely than males (41.67%) to have a delayed symptom onset (pâ¯=â¯0.045). Additionally, females took significantly longer to reach asymptomatic (pâ¯=â¯0.015) and return-to-play clearance (pâ¯=â¯0.005). Within the first 2 weeks post-concussion, 86.11% of males reached asymptomatic, while only 45.50% of females reached the same phase of recovery. Most males (91.67%) were cleared for return to play within 3 weeks of their concussion, compared to less than half (45.50%) of females. CONCLUSION: The current study proposes possible risk factors, mechanisms, and clinical profiles to be validated in future concussions studies with larger female sample sizes. Understanding specific risk factors, concussion mechanisms, and clinical profiles of concussion in collegiate ice hockey may generate ideas for future concussion prevention or intervention studies.
Assuntos
Concussão Encefálica/etiologia , Hóquei/lesões , Doenças Assintomáticas , Concussão Encefálica/epidemiologia , Intervalos de Confiança , Feminino , Hóquei/estatística & dados numéricos , Humanos , Masculino , Protetores Bucais , Razão de Chances , Estudos Prospectivos , Volta ao Esporte/estatística & dados numéricos , Fatores de Risco , Assunção de Riscos , Fatores Sexuais , Estudantes , Universidades , Adulto JovemRESUMO
BACKGROUND: Symptom resolution is a key marker in determining fitness for return to activity following concussion, but in some cases, distinguishing persistent symptoms due to concussion versus symptoms related to other factors can be challenging. OBJECTIVE: To determine base rates of postconcussional syndrome (PCS) diagnostic categorization in healthy cadets and student athletes with no recent concussion. METHODS: 13,009 cadets and 21,006 student athletes completed baseline preseason testing. After inclusion/exclusion criteria were applied, the final sample included 12,039 cadets [9123 men (75.8%); 2916 women (24.2%)] and 18,548 student athletes [10,192 men (54.9%); 8356 women (45.1%)]. Participants completed the Sport Concussion Assessment Tool-3rd Edition (SCAT3) symptom evaluation as part of baseline preseason testing. The PCS diagnostic categorization was classified by the International Classification of Diseases, 10th Revision (ICD-10) symptom criteria for PCS. RESULTS: In the absence of recent concussion, subgroups of cadets (17.8% of men; 27.6% of women) and student athletes (11.4% of men; 20.0% of women) reported a cluster of symptoms that would meet the ICD-10 symptom criteria for PCS. Participants with insufficient sleep and/or preexisting conditions (e.g., mental health problems), freshmen cadets, and cadets at the U.S. Coast Guard Academy and at the U.S. Air Force Academy (freshmen were tested during basic cadet training) were more likely to report a cluster of symptoms that would meet the ICD-10 symptom criteria for PCS. CONCLUSION: The ICD-10 symptom criteria for PCS can be mimicked by preexisting conditions, insufficient sleep, and/or stress. Findings support person-specific assessment and management of symptoms following concussion.
Assuntos
Traumatismos em Atletas , Concussão Encefálica , Síndrome Pós-Concussão , Atletas , Traumatismos em Atletas/diagnóstico , Concussão Encefálica/diagnóstico , Feminino , Humanos , Masculino , EstudantesRESUMO
Importance: Concussion ranks among the most common injuries in football. Beyond the risks of concussion are growing concerns that repetitive head impact exposure (HIE) may increase risk for long-term neurologic health problems in football players. Objective: To investigate the pattern of concussion incidence and HIE across the football season in collegiate football players. Design, Setting, and Participants: In this observational cohort study conducted from 2015 to 2019 across 6 Division I National Collegiate Athletic Association (NCAA) football programs participating in the Concussion Assessment, Research, and Education (CARE) Consortium, a total of 658 collegiate football players were instrumented with the Head Impact Telemetry (HIT) System (46.5% of 1416 eligible football players enrolled in the CARE Advanced Research Core). Players were prioritized for instrumentation with the HIT System based on their level of participation (ie, starters prioritized over reserves). Exposure: Participation in collegiate football games and practices from 2015 to 2019. Main Outcomes and Measures: Incidence of diagnosed concussion and HIE from the HIT System. Results: Across 5 seasons, 528â¯684 head impacts recorded from 658 players (all male, mean age [SD], 19.02 [1.25] years) instrumented with the HIT System during football practices or games met quality standards for analysis. Players sustained a median of 415 (interquartile range [IQR], 190-727) recorded head impacts (ie, impacts) per season. Sixty-eight players sustained a diagnosed concussion. In total, 48.5% of concussions (n = 33) occurred during preseason training, despite preseason representing only 20.8% of the football season (0.059 preseason vs 0.016 regular-season concussions per team per day; mean difference, 0.042; 95% CI, 0.020-0.060; P = .001). Total HIE in the preseason occurred at twice the proportion of the regular season (324.9 vs 162.4 impacts per team per day; mean difference, 162.6; 95% CI, 110.9-214.3; P < .001). Every season, HIE per athlete was highest in August (preseason) (median, 146.0 impacts; IQR, 63.0-247.8) and lowest in November (median, 80.0 impacts; IQR, 35.0-148.0). Over 5 seasons, 72% of concussions (n = 49) (game proportion, 0.28; 95% CI, 0.18-0.40; P < .001) and 66.9% of HIE (262.4 practices vs 137.2 games impacts per player; mean difference, 125.3; 95% CI, 110.0-140.6; P < .001) occurred in practice. Even within the regular season, total HIE in practices (median, 175.0 impacts per player per season; IQR, 76.0-340.5) was 84.2% higher than in games (median, 95.0 impacts per player per season; IQR, 32.0-206.0). Conclusions and Relevance: Concussion incidence and HIE among college football players are disproportionately higher in the preseason than regular season, and most concussions and HIE occur during football practices, not games. These data point to a powerful opportunity for policy, education, and other prevention strategies to make the greatest overall reduction in concussion incidence and HIE in college football, particularly during preseason training and football practices throughout the season, without major modification to game play. Strategies to prevent concussion and HIE have important implications to protecting the safety and health of football players at all competitive levels.
Assuntos
Atletas , Pesquisa Biomédica/normas , Concussão Encefálica/epidemiologia , Concussão Encefálica/prevenção & controle , Futebol Americano/lesões , Universidades , Adolescente , Pesquisa Biomédica/métodos , Concussão Encefálica/diagnóstico por imagem , Estudos de Coortes , Humanos , Masculino , Adulto JovemRESUMO
Importance: Validation of protein biomarkers for concussion diagnosis and management in military combative training is important, as these injuries occur outside of traditional health care settings and are generally difficult to diagnose. Objective: To investigate acute blood protein levels in military cadets after combative training-associated concussions. Design, Setting, and Participants: This multicenter prospective case-control study was part of a larger cohort study conducted by the National Collegiate Athletic Association and the US Department of Defense Concussion Assessment Research and Education (CARE) Consortium from February 20, 2015, to May 31, 2018. The study was performed among cadets from 2 CARE Consortium Advanced Research Core sites: the US Military Academy at West Point and the US Air Force Academy. Cadets who incurred concussions during combative training (concussion group) were compared with cadets who participated in the same combative training exercises but did not incur concussions (contact-control group). Clinical measures and blood sample collection occurred at baseline, the acute postinjury point (<6 hours), the 24- to 48-hour postinjury point, the asymptomatic postinjury point (defined as the point at which the cadet reported being asymptomatic and began the return-to-activity protocol), and 7 days after return to activity. Biomarker levels and estimated mean differences in biomarker levels were natural log (ln) transformed to decrease the skewness of their distributions. Data were collected from August 1, 2016, to May 31, 2018, and analyses were conducted from March 1, 2019, to January 14, 2020. Exposure: Concussion incurred during combative training. Main Outcomes and Measures: Proteins examined included glial fibrillary acidic protein, ubiquitin C-terminal hydrolase-L1, neurofilament light chain, and tau. Quantification was conducted using a multiplex assay (Simoa; Quanterix Corp). Clinical measures included the Sport Concussion Assessment Tool-Third Edition symptom severity evaluation, the Standardized Assessment of Concussion, the Balance Error Scoring System, and the 18-item Brief Symptom Inventory. Results: Among 103 military service academy cadets, 67 cadets incurred concussions during combative training, and 36 matched cadets who engaged in the same training exercises did not incur concussions. The mean (SD) age of cadets in the concussion group was 18.6 (1.3) years, and 40 cadets (59.7%) were male. The mean (SD) age of matched cadets in the contact-control group was 19.5 (1.3) years, and 25 cadets (69.4%) were male. Compared with cadets in the contact-control group, those in the concussion group had significant increases in glial fibrillary acidic protein (mean difference in ln values, 0.34; 95% CI, 0.18-0.50; P < .001) and ubiquitin C-terminal hydrolase-L1 (mean difference in ln values, 0.97; 95% CI, 0.44-1.50; P < .001) levels at the acute postinjury point. The glial fibrillary acidic protein level remained high in the concussion group compared with the contact-control group at the 24- to 48-hour postinjury point (mean difference in ln values, 0.22; 95% CI, 0.06-0.38; P = .007) and the asymptomatic postinjury point (mean difference in ln values, 0.21; 95% CI, 0.05-0.36; P = .01). The area under the curve for all biomarkers combined, which was used to differentiate cadets in the concussion and contact-control groups, was 0.80 (95% CI, 0.68-0.93; P < .001) at the acute postinjury point. Conclusions and Relevance: This study's findings indicate that blood biomarkers have potential for use as research tools to better understand the pathobiological changes associated with concussion and to assist with injury identification and recovery from combative training-associated concussions among military service academy cadets. These results extend the previous findings of studies of collegiate athletes with sport-associated concussions.
Assuntos
Concussão Encefálica/sangue , Proteína Glial Fibrilar Ácida/sangue , Militares , Proteínas de Neurofilamentos/sangue , Ubiquitina Tiolesterase/sangue , Proteínas tau/sangue , Adolescente , Traumatismos em Atletas/sangue , Traumatismos em Atletas/fisiopatologia , Concussão Encefálica/fisiopatologia , Estudos de Casos e Controles , Cognição , Feminino , Humanos , Masculino , Traumatismos Ocupacionais/sangue , Traumatismos Ocupacionais/fisiopatologia , Estudos Prospectivos , Estados Unidos , Universidades , Adulto JovemRESUMO
Evidence for preventive strategies to lessen running injuries is needed as these occur in 40%-50% of runners on an annual basis. Many factors influence running injuries, but strong evidence for prevention only exists for training modification primarily by reducing weekly mileage. Two anatomical factors - cavus feet and leg length inequality - demonstrate a link to injury. Weak evidence suggests that orthotics may lessen risk of stress fracture, but no clear evidence proves they will reduce the risk of those athletes with leg length inequality or cavus feet. This article reviews other potential injury variables, including strength, biomechanics, stretching, warm-up, nutrition, psychological factors, and shoes. Additional research is needed to determine whether interventions to address any of these will help prevent running injury.
Assuntos
Traumatismos em Atletas/etiologia , Traumatismos em Atletas/prevenção & controle , Fraturas de Estresse/prevenção & controle , Corrida/lesões , Adolescente , Fenômenos Biomecânicos , Criança , Feminino , Deformidades do Pé/complicações , Humanos , Desigualdade de Membros Inferiores/complicações , Masculino , Exercícios de Alongamento Muscular , Aparelhos Ortopédicos , SapatosRESUMO
This study examined the association between estimated age of first exposure (eAFE) to contact sport participation and neurocognitive performance and symptom ratings in U.S. service academy National Collegiate Athletic Association (NCAA) athletes. Male cadets (N = 891), who participate in lacrosse (n = 211), wrestling (n = 170), ice hockey (n = 81), soccer (n = 119), rugby (n = 10), or non-contact sports (n = 298), completed the Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) test before the season. Generalized linear modeling was used to predict each neurocognitive domain score and total symptom severity score. Predictor variables were entered in the following order: group (contact vs. non-contact); eAFE (eAFE <12 years vs. eAFE ≥12 years); group-by-eAFE; and covariates for learning accommodation status, concussion history, and age. The group-by-eAFE interaction was not significant for any of the ImPACT composite scores (Verbal Memory, Wald χ2 = 0.073, p = 0.788; Visual Memory, Wald χ2 = 2.71, p = 0.100; Visual Motor Speed, Wald χ2 = 0.078, p = 0.780; Reaction Time, Wald χ2 = 0.003, p = 0.955; Symptom Severity, Wald χ2 = 2.87, p = 0.090). Learning accommodation history was associated with lower scores on Visual Motor Speed (χ2 = 6.19, p = 0.013, B = -2.97). Older age was associated with faster reaction time (χ2 = 4.40, p = 0.036, B = -0.006) and lesser symptom severity (χ2 = 5.55, p = 0.019, B = -0.068). No other parameters were significant. We observed no association between eAFE, contact sport participation, neurocognitive functioning, or subjectively experienced symptoms in this cohort. Earlier eAFE to contact sport participation is not related to worse neurocognitive performance or greater subjectively experienced symptoms in male U.S. service academy NCAA athletes.
Assuntos
Atletas , Concussão Encefálica/complicações , Cognição/fisiologia , Disfunção Cognitiva/etiologia , Esportes , Adolescente , Fatores Etários , Humanos , Masculino , Militares , Testes Neuropsicológicos , Adulto JovemRESUMO
Despite the significant impact that concussion has on military service members, significant gaps remain in our understanding of the optimal diagnostic, management, and return to activity/duty criteria to mitigate the consequences of concussion. In response to these significant knowledge gaps, the US Department of Defense (DoD) and the National Collegiate Athletic Association (NCAA) partnered to form the NCAA-DoD Grand Alliance in 2014. The NCAA-DoD CARE Consortium was established with the aim of creating a national multisite research network to study the clinical and neurobiological natural history of concussion in NCAA athletes and military Service Academy cadets and midshipmen. In addition to the data collected for the larger CARE Consortium effort, the service academies have pursued military-specific lines of research relevant to operational and medical readiness associated with concussion. The purpose of this article is to describe the structure of the NCAA-DoD Grand Alliance efforts at the service academies, as well as discuss military-specific research objectives and provide an overview of progress to date. A secondary objective is to discuss the challenges associated with conducting large-scale studies in the Service Academy environment and highlight future directions for concussion research endeavors across the CARE Service Academy sites.
RESUMO
Importance: There is potential scientific and clinical value in validation of objective biomarkers for sport-related concussion (SRC). Objective: To investigate the association of acute-phase blood biomarker levels with SRC in collegiate athletes. Design, Setting, and Participants: This multicenter, prospective, case-control study was conducted by the National Collegiate Athletic Association (NCAA) and the US Department of Defense Concussion Assessment, Research, and Education (CARE) Consortium from February 20, 2015, to May 31, 2018, at 6 CARE Advanced Research Core sites. A total of 504 collegiate athletes with concussion, contact sport control athletes, and non-contact sport control athletes completed clinical testing and blood collection at preseason baseline, the acute postinjury period, 24 to 48 hours after injury, the point of reporting being asymptomatic, and 7 days after return to play. Data analysis was conducted from March 1 to November 30, 2019. Main Outcomes and Measures: Glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase-L1 (UCH-L1), neurofilament light chain, and tau were quantified using the Quanterix Simoa multiplex assay. Clinical outcome measures included the Sport Concussion Assessment Tool-Third Edition (SCAT-3) symptom evaluation, Standardized Assessment of Concussion, Balance Error Scoring System, and Brief Symptom Inventory 18. Results: A total of 264 athletes with concussion (mean [SD] age, 19.08 [1.24] years; 211 [79.9%] male), 138 contact sport controls (mean [SD] age, 19.03 [1.27] years; 107 [77.5%] male), and 102 non-contact sport controls (mean [SD] age, 19.39 [1.25] years; 82 [80.4%] male) were included in the study. Athletes with concussion had significant elevation in GFAP (mean difference, 0.430 pg/mL; 95% CI, 0.339-0.521 pg/mL; P < .001), UCH-L1 (mean difference, 0.449 pg/mL; 95% CI, 0.167-0.732 pg/mL; P < .001), and tau levels (mean difference, 0.221 pg/mL; 95% CI, 0.046-0.396 pg/mL; P = .004) at the acute postinjury time point compared with preseason baseline. Longitudinally, a significant interaction (group × visit) was found for GFAP (F7,1507.36 = 16.18, P < .001), UCH-L1 (F7,1153.09 = 5.71, P < .001), and tau (F7,1480.55 = 6.81, P < .001); the interaction for neurofilament light chain was not significant (F7,1506.90 = 1.33, P = .23). The area under the curve for the combination of GFAP and UCH-L1 in differentiating athletes with concussion from contact sport controls at the acute postinjury period was 0.71 (95% CI, 0.64-0.78; P < .001); the acute postinjury area under the curve for all 4 biomarkers combined was 0.72 (95% CI, 0.65-0.79; P < .001). Beyond SCAT-3 symptom score, GFAP at the acute postinjury time point was associated with the classification of athletes with concussion from contact controls (ß = 12.298; 95% CI, 2.776-54.481; P = .001) and non-contact sport controls (ß = 5.438; 95% CI, 1.676-17.645; P = .005). Athletes with concussion with loss of consciousness or posttraumatic amnesia had significantly higher levels of GFAP than athletes with concussion with neither loss of consciousness nor posttraumatic amnesia at the acute postinjury time point (mean difference, 0.583 pg/mL; 95% CI, 0.369-0.797 pg/mL; P < .001). Conclusions and Relevance: The results suggest that blood biomarkers can be used as research tools to inform the underlying pathophysiological mechanism of concussion and provide additional support for future studies to optimize and validate biomarkers for potential clinical use in SRC.
Assuntos
Atletas/estatística & dados numéricos , Biomarcadores/sangue , Concussão Encefálica/sangue , Concussão Encefálica/diagnóstico , Concussão Encefálica/fisiopatologia , Estudantes/estatística & dados numéricos , Adolescente , Adulto , Estudos de Casos e Controles , Feminino , Proteína Glial Fibrilar Ácida/sangue , Humanos , Masculino , Proteínas de Neurofilamentos/sangue , Estudos Prospectivos , Ubiquitina Tiolesterase/sangue , Estados Unidos , Adulto Jovem , Proteínas tau/sangueRESUMO
OBJECTIVE: To examine the association between estimated age at first exposure (eAFE) to American football and clinical measures throughout recovery following concussion. METHODS: Participants were recruited across 30 colleges and universities as part of the National Collegiate Athletic Association (NCAA)-Department of Defense Concussion Assessment, Research and Education Consortium. There were 294 NCAA American football players (age 19 ± 1 years) evaluated 24-48 hours following concussion with valid baseline data and 327 (age 19 ± 1 years) evaluated at the time they were asymptomatic with valid baseline data. Participants sustained a medically diagnosed concussion between baseline testing and postconcussion assessments. Outcome measures included the number of days until asymptomatic, Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) composite scores, Balance Error Scoring System (BESS) total score, and Brief Symptom Inventory 18 (BSI-18) subscores. The eAFE was defined as participant's age at the time of assessment minus self-reported number of years playing football. RESULTS: In unadjusted regression models, younger eAFE was associated with lower (worse) ImPACT Visual Motor Speed (R 2 = 0.031, p = 0.012) at 24-48 hours following injury and lower (better) BSI-18 Somatization subscores (R 2 = 0.014, p = 0.038) when the athletes were asymptomatic. The effect sizes were very small. The eAFE was not associated with the number of days until asymptomatic, other ImPACT composite scores, BESS total score, or other BSI-18 subscores. CONCLUSION: Earlier eAFE to American football was not associated with longer symptom recovery, worse balance, worse cognitive performance, or greater psychological distress following concussion. In these NCAA football players, longer duration of exposure to football during childhood and adolescence appears to be unrelated to clinical recovery following concussion.
Assuntos
Traumatismos em Atletas/terapia , Concussão Encefálica/terapia , Futebol Americano/lesões , Adolescente , Adulto , Distribuição por Idade , Atletas , Traumatismos em Atletas/complicações , Concussão Encefálica/diagnóstico , Humanos , Masculino , Testes Neuropsicológicos , Estudantes , Estados Unidos , Universidades , Adulto JovemRESUMO
BACKGROUND: Return-to-play protocols describe stepwise, graduated recoveries for safe return from concussion; however, studies that comprehensively track return-to-play time are expensive to administer and heavily sampled from elite male contact-sport athletes. PURPOSE: To retrospectively assess probable recovery time for collegiate patients to return to play after concussion, especially for understudied populations, such as women and nonelite athletes. STUDY DESIGN: Cohort study; Level of evidence, 3. METHODS: Medical staff at a military academy logged a total of 512 concussion medical records over 38 months. Of these, 414 records included complete return-to-play protocols with return-to-play time, sex, athletic status, cause, and other data. RESULTS: Overall mean return to play was 29.4 days. Sex and athletic status both affected return-to-play time. Men showed significantly shorter return to play than women, taking 24.7 days (SEM, 1.5 days) versus 35.5 days (SEM, 2.7 days) (P < .001). Intercollegiate athletes also reported quicker return-to-play times than nonintercollegiate athletes: 25.4 days (SEM, 2.6 days) versus 34.7 days (SEM, 1.6 days) (P = .002). These variables did not significantly interact. CONCLUSION: Mean recovery time across all groups (29.4 days) showed considerably longer return to play than the most commonly cited concussion recovery time window (7-10 days) for collegiate athletes. Understudied groups, such as women and nonelite athletes, demonstrated notably longer recovery times. The diversity of this sample population was associated with longer return-to-play times; it is unclear how other population-specific factors may have contributed. These inclusive return-to-play windows may indicate longer recovery times outside the population of elite athletes.