Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 327(1): H155-H181, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38787382

RESUMO

Perivascular adipose tissue (PVAT) regulates vascular tone by releasing anticontractile factors. These anticontractile factors are driven by processes downstream of adipocyte stimulation by norepinephrine; however, whether norepinephrine originates from neural innervation or other sources is unknown. The goal of this study was to test the hypothesis that neurons innervating PVAT provide the adrenergic drive to stimulate adipocytes in aortic and mesenteric perivascular adipose tissue (aPVAT and mPVAT), and white adipose tissue (WAT). Healthy male and female mice (8-13 wk) were used in all experiments. Expression of genes associated with synaptic transmission were quantified by qPCR and adipocyte activity in response to neurotransmitters and neuron depolarization was assessed in AdipoqCre+;GCaMP5g-tdTf/WT mice. Immunostaining, tissue clearing, and transgenic reporter lines were used to assess anatomical relationships between nerves and adipocytes. Although synaptic transmission component genes are expressed in adipose tissues (aPVAT, mPVAT, and WAT), strong nerve stimulation with electrical field stimulation does not significantly trigger calcium responses in adipocytes. However, norepinephrine consistently elicits strong calcium responses in adipocytes from all adipose tissues studied. Bethanechol induces minimal adipocyte responses. Imaging neural innervation using various techniques reveals that nerve fibers primarily run alongside blood vessels and rarely branch into the adipose tissue. Although nerve fibers are associated with blood vessels in adipose tissue, they demonstrate limited anatomical and functional interactions with adjacent adipocytes, challenging the concept of classical innervation. These findings dispute the significant involvement of neural input in regulating PVAT adipocyte function and emphasize alternative mechanisms governing adrenergic-driven anticontractile functions of PVAT.NEW & NOTEWORTHY This study challenges prevailing views on neural innervation in perivascular adipose tissue (PVAT) and its role in adrenergic-driven anticontractile effects on vasculature. Contrary to existing paradigms, limited anatomical and functional connections were found between PVAT nerve fibers and adipocytes, underscoring the importance of exploring alternative mechanistic pathways. Understanding the mechanisms involved in PVAT's anticontractile effects is critical for developing potential therapeutic interventions against dysregulated vascular tone, hypertension, and cardiovascular disease.


Assuntos
Adipócitos , Norepinefrina , Animais , Masculino , Feminino , Adipócitos/metabolismo , Norepinefrina/metabolismo , Norepinefrina/farmacologia , Camundongos , Tecido Adiposo/inervação , Tecido Adiposo/metabolismo , Camundongos Endogâmicos C57BL , Transmissão Sináptica , Tecido Adiposo Branco/inervação , Tecido Adiposo Branco/metabolismo , Camundongos Transgênicos , Sinalização do Cálcio
2.
Am J Physiol Heart Circ Physiol ; 324(5): H581-H597, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36897751

RESUMO

Hypertension is a leading modifiable risk factor for cerebral small vessel disease. Our laboratory has shown that endothelium-dependent dilation in cerebral parenchymal arterioles (PAs) is dependent on transient receptor potential vanilloid 4 (TRPV4) activation, and this pathway is impaired in hypertension. This impaired dilation is associated with cognitive deficits and neuroinflammation. Epidemiological evidence suggests that women with midlife hypertension have an increased dementia risk that does not exist in age-matched men, though the mechanisms responsible for this are unclear. This study aimed to determine the sex differences in young, hypertensive mice to serve as a foundation for future determination of sex differences at midlife. We tested the hypothesis that young hypertensive female mice would be protected from the impaired TRPV4-mediated PA dilation and cognitive dysfunction observed in male mice. Angiotensin II (ANG II)-filled osmotic minipumps (800 ng/kg/min, 4 wk) were implanted in 16- to 19-wk-old male C56BL/6 mice. Age-matched female mice received either 800 ng/kg/min or 1,200 ng/kg/min ANG II. Sham-operated mice served as controls. Systolic blood pressure was elevated in ANG II-treated male mice and in 1,200 ng ANG II-treated female mice versus sex-matched shams. PA dilation in response to the TRPV4 agonist GSK1016790A (10-9-10-5 M) was impaired in hypertensive male mice, which was associated with cognitive dysfunction and neuroinflammation, reproducing our previous findings. Hypertensive female mice exhibited normal TRPV4-mediated PA dilation and were cognitively intact. Female mice also showed fewer signs of neuroinflammation than male mice. Determining the sex differences in cerebrovascular health in hypertension is critical for developing effective therapeutic strategies for women.NEW & NOTEWORTHY Vascular dementia is a significant public health concern, and the effect of biological sex on dementia development is not well understood. TRPV4 channels are essential regulators of cerebral parenchymal arteriolar function and cognition. Hypertension impairs TRPV4-mediated dilation and memory in male rodents. Data presented here suggest female sex protects against impaired TRPV4 dilation and cognitive dysfunction during hypertension. These data advance our understanding of the influence of biological sex on cerebrovascular health in hypertension.


Assuntos
Disfunção Cognitiva , Demência , Hipertensão , Camundongos , Feminino , Masculino , Animais , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Arteríolas/metabolismo , Doenças Neuroinflamatórias , Cognição , Disfunção Cognitiva/prevenção & controle , Pressão Sanguínea , Angiotensina II/farmacologia , Camundongos Endogâmicos C57BL
3.
Microcirculation ; 30(5-6): e12808, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37204759

RESUMO

OBJECTIVE: Serotonin (5-HT) infusion in vivo causes hypotension and a fall in total peripheral resistance. However, the vascular segment and the receptors that mediate this response remain in question. We hypothesized that 5-HT7 receptors mediate arteriolar dilation to 5-HT in skeletal muscle microcirculation. METHODS: Cremaster muscles of isoflurane-anesthetized male Sprague-Dawley rats were prepared for in vivo microscopy of third- and fourth-order arterioles and superfused with physiological salt solution at 34°C. Quantitative real-time PCR (RT-PCR) was applied to pooled samples of first- to third-order cremaster arterioles (2-4 rats/sample) to evaluate 5-HT7 receptor expression. RESULTS: Topical 5-HT (1-10 nmols) or the 5-HT1/7 receptor agonist, 5-carboxamidotryptamine (10-30 nM), dilated third- and fourth-order arterioles, responses that were abolished by 1 µM SB269970, a selective 5-HT7 receptor antagonist. In contrast, dilation induced by the muscarinic agonist, methacholine (100 nmols) was not inhibited by SB269970. Serotonin (10 nmols) failed to dilate cremaster arterioles in 5-HT7 receptor knockout rats whereas arterioles in wild-type litter mates dilated to 1 nmol 5-HT, a response blocked by 1 µM SB269970. Quantitative RT-PCR revealed that cremaster arterioles expressed mRNA for 5-HT7 receptors. CONCLUSIONS: 5-HT7 receptors mediate dilation of small arterioles in skeletal muscle and likely contribute to 5-HT-induced hypotension, in vivo.


Assuntos
Serotonina , Vasodilatação , Ratos , Masculino , Animais , Serotonina/farmacologia , Arteríolas/fisiologia , Ratos Sprague-Dawley , Dilatação , Músculo Esquelético/irrigação sanguínea , Músculos Abdominais
4.
Microcirculation ; 28(1): e12653, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32767848

RESUMO

OBJECTIVE: Parenchymal arterioles (PAs) regulate perfusion of the cerebral microcirculation, and impaired PA endothelium-dependent dilation occurs in dementia models mimicking chronic cerebral hypoperfusion (CCH). Epoxyeicosatrienoic acids (EETs) are vasodilators; their actions are potentiated by soluble epoxide hydrolase (sEH) inhibition. We hypothesized that chronic sEH inhibition with trifluoromethoxyphenyl-3 (1-propionylpiperidin-4-yl) urea (TPPU) would prevent cognitive dysfunction and improve PA dilation in a hypertensive CCH model. METHODS: Bilateral carotid artery stenosis (BCAS) was used to induce CCH in twenty-week-old male stroke-prone spontaneously hypertensive rats (SHSRP) that were treated with vehicle or TPPU for 8 weeks. Cognitive function was assessed by novel object recognition. PA dilation and structure were assessed by pressure myography, and mRNA expression in brain tissue was assessed by qRT-PCR. RESULTS: TPPU did not enhance resting cerebral perfusion, but prevented CCH-induced memory deficits. TPPU improved PA endothelium-dependent dilation but reduced the sensitivity of PAs to a nitric oxide donor. TPPU treatment had no effect on PA structure or biomechanical properties. TPPU treatment increased brain mRNA expression of brain derived neurotrophic factor, doublecortin, tumor necrosis factor-alpha, sEH, and superoxide dismutase 3, CONCLUSIONS: These data suggest that sEH inhibitors may be viable treatments for cognitive impairments associated with hypertension and CCH.


Assuntos
Isquemia Encefálica , Circulação Cerebrovascular/efeitos dos fármacos , Cognição/efeitos dos fármacos , Epóxido Hidrolases/antagonistas & inibidores , Hipertensão , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/enzimologia , Dilatação , Proteína Duplacortina , Inibidores Enzimáticos/química , Epóxido Hidrolases/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/enzimologia , Masculino , Ratos , Ratos Endogâmicos SHR
5.
Curr Top Membr ; 85: 1-18, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32402636

RESUMO

The microcirculation is the network of feed arteries, arterioles, capillaries and venules that supply and drain blood from every tissue and organ in the body. It is here that exchange of heat, oxygen, carbon dioxide, nutrients, hormones, water, cytokines, and immune cells takes place; essential functions necessary to maintenance of homeostasis throughout the life span. This chapter will outline the structure and function of each microvascular segment highlighting the critical roles played by ion channels in the microcirculation. Feed arteries upstream from the true microcirculation and arterioles within the microcirculation contribute to systemic vascular resistance and blood pressure control. They also control total blood flow to the downstream microcirculation with arterioles being responsible for distribution of blood flow within a tissue or organ dependent on the metabolic needs of the tissue. Terminal arterioles control blood flow and blood pressure to capillary units, the primary site of diffusional exchange between blood and tissues due to their large surface area. Venules collect blood from capillaries and are important sites for fluid exchange and immune cell trafficking. Ion channels in microvascular smooth muscle cells, endothelial cells and pericytes importantly contribute to all of these functions through generation of intracellular Ca2+ and membrane potential signals in these cells.


Assuntos
Sinalização do Cálcio , Canais Iônicos/metabolismo , Microcirculação , Animais , Humanos , Potenciais da Membrana
6.
Curr Top Membr ; 85: 19-58, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32402640

RESUMO

Myogenic tone is a hall-mark feature of arterioles in the microcirculation. This pressure-induced, contractile activation of vascular smooth muscle cells (VSMCs) in the wall of these microvessels importantly contributes to the regulation and maintenance of blood pressure; blood flow to and within organs and tissues; and capillary pressure and fluid balance. Ion channels play a central role in the genesis and maintenance of myogenic tone. Mechanosensitive ion channels such as TRPC6 may serve as one of the sensors of pressure-induced membrane stress/strain, and TRPC6 along with TRPM4 channels are responsible pressure-induced VSMC depolarization that may be bolstered by the activity of Ca2+-activated Cl- channels and inhibition of voltage-gated K+ (KV) channels, inwardly-rectifying K+ (KIR) channels and ATP-sensitive K+ (KATP) channels. Membrane potential depolarization activates voltage-gated Ca2+ channels (VGCCs), with CaV1.2 channels playing a central role. Calcium entry through CaV1.2 channels, which is amplified by Ca2+ release through IP3 receptors in the form of Ca2+ waves in some arterioles, provides the major source of activator calcium responsible for arteriolar myogenic tone. Stabilizing negative-feedback comes from depolarization- and Ca2+-induced activation of large-conductance Ca2+-activated K+ channels and depolarization-induced activation of KV channels. Myogenic tone also is dampened by tonic activity of KIR and KATP channels. While much has been learned about ion channel expression and function in myogenic tone, additional studies are required to fill in our knowledge gaps due to significant regional differences in ion channel expression and function and a lack of data specifically from VSMCs in arterioles.


Assuntos
Arteríolas/fisiologia , Canais Iônicos/metabolismo , Desenvolvimento Muscular , Animais , Arteríolas/citologia , Arteríolas/metabolismo , Cálcio/metabolismo , Humanos , Músculo Liso Vascular/fisiologia
7.
Mol Pharmacol ; 96(6): 826-834, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31645376

RESUMO

Regulator of G protein signaling 2 (RGS2) plays a role in reducing vascular contraction and promoting relaxation due to its GTPase accelerating protein activity toward Gαq. Previously, we identified four human loss-of-function (LOF) mutations in RGS2 (Q2L, D40Y, R44H, and R188H). This study aimed to investigate whether those RGS2 LOF mutations disrupt the ability of RGS2 to regulate vascular reactivity. Isolated mesenteric arteries (MAs) from RGS2-/- mice showed an elevated contractile response to 5 nM angiotensin II and a loss of acetylcholine (ACh)-mediated vasodilation. Reintroduction of a wild-type (WT) RGS2-GFP plasmid into RGS2-/- MAs suppressed the vasoconstrictor response to angiotensin II. RGS2 LOF mutants failed to suppress the angiotensin II constriction response compared with RGS2 WT. In contrast, ACh-mediated vasoconstriction was restored by expression of RGS2 WT, D40Y, and R44H but not by RGS2 Q2L or R188H. Phosphorylation of RGS2 D40Y and R44H by protein kinase G (PKG) may explain their maintained function to support relaxation in MAs. This is supported by phosphomimetic mutants and suppression of vasorelaxation mediated by RGS2 D40Y by a PKG inhibitor. These results demonstrate that RGS2 attenuates vasoconstriction in MAs and that RGS2 LOF mutations cannot carry out this effect. Among them, the Q2L and R188H mutants supported less relaxation to ACh, whereas relaxation mediated by the D40Y and R44H mutant proteins was equal to that with WT protein. Phosphorylation of RGS2 by PKG appears to contribute to this vasorelaxation. These results provide insights for precision medicine targeting the rare individuals carrying these RGS2 mutations. SIGNIFICANCE STATEMENT: Regulator of G protein signaling 2 (RGS2) has been implicated in the control of blood pressure; rare mutations in the RGS2 gene have been identified in large-scale human gene sequencing studies. Four human mutations in RGS2 that cause loss of function (LOF) in cell-based assays were examined in isolated mouse arteries for effects on both vasoconstriction and vasodilation. All mutants showed the expected LOF effects in suppressing vasoconstriction. Surprisingly, the D40Y and R44H mutant RGS2 showed normal control of vasodilation. We propose that this is due to rescue of the mislocalization phenotype of these two mutants by nitric oxide-mediated/protein kinase G-dependent phosphorylation. These mechanisms may guide drug discovery or drug repurposing efforts for hypertension by enhancing RGS2 function.


Assuntos
Mutação com Perda de Função/fisiologia , Proteínas RGS/genética , Proteínas RGS/metabolismo , Vasoconstrição/fisiologia , Vasoconstritores/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/fisiologia , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Mutação com Perda de Função/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estrutura Secundária de Proteína , Proteínas RGS/química , Vasoconstrição/efeitos dos fármacos
8.
Microcirculation ; 26(6): e12535, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30721555

RESUMO

OBJECTIVE: Hypertension-associated PA dysfunction reduces cerebral perfusion and impairs cognition. This is associated with impaired TRPV4-mediated PA dilation; therefore, we tested the hypothesis that TRPV4 channels are important regulators of cerebral perfusion, PA structure and dilation, and cognition. METHODS: Ten- to twelve-month-old male TRPV4 knockout (WKY-Trpv4em4Mcwi ) and age-matched control WKY rats were studied. Cerebral perfusion was measured by MRI with arterial spin labeling. PA structure and function were assessed using pressure myography and cognitive function using the novel object recognition test. RESULTS: Cerebral perfusion was reduced in the WKY-Trpv4em4Mcwi rats. This was not a result of PA remodeling because TRPV4 deletion did not change PA structure. TRPV4 deletion did not change PA myogenic tone development, but PAs from the WKY-Trpv4em4Mcwi rats had severely blunted endothelium-dependent dilation. The WKY-Trpv4em4Mcwi rats had impaired cognitive function and exhibited depressive-like behavior. The WKY-Trpv4em4Mcwi rats also had increased microglia activation, and increased mRNA expression of GFAP and tumor necrosis factor alpha suggesting increased inflammation. CONCLUSION: Our data indicate that TRPV4 channels play a critical role in cerebral perfusion, PA dilation, cognition, and inflammation. Impaired TRPV4 function in diseases such as hypertension may increase the risk of the development of vascular dementia.


Assuntos
Encéfalo , Artérias Cerebrais , Circulação Cerebrovascular , Cognição , Hipertensão , Canais de Cátion TRPV/biossíntese , Animais , Arteríolas/metabolismo , Arteríolas/patologia , Arteríolas/fisiopatologia , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Artérias Cerebrais/metabolismo , Artérias Cerebrais/patologia , Artérias Cerebrais/fisiopatologia , Deleção de Genes , Hipertensão/metabolismo , Hipertensão/patologia , Hipertensão/fisiopatologia , Masculino , Ratos , Ratos Endogâmicos WKY , Ratos Transgênicos , Canais de Cátion TRPV/genética , Vasodilatação
9.
Br J Sports Med ; 53(15): 965-968, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29331994

RESUMO

OBJECTIVES: The aim of this study was to investigate whether ACL injury (ACLi) or meniscal injury increases the risk of end-stage osteoarthritis (OA) resulting in total knee replacement (TKR). METHODS: A matched case-control study of all TKRs performed in the UK between January 1990 and July 2011 and recorded in the Clinical Practice Research Datalink (CPRD) was undertaken. The CPRD contains longitudinal data on approximately 3.6 million patients. Two controls were selected for each case of TKR, matched on age, sex and general practitioner location as a proxy for socioeconomic status. Individuals with inflammatory arthritis were excluded. The odds of having TKR for individuals with a CPRD-recorded ACLi were compared with those without ACLi using conditional logistic regression, after adjustment for body mass index, previous knee fracture and meniscal injury. The adjusted odds of TKR in individuals with a recorded meniscal injury compared with those without were calculated. RESULTS: After exclusion of individuals with inflammatory arthritis, there were 49 723 in the case group and 104 353 controls. 153 (0.31%) cases had a history of ACLi compared with 41 (0.04%) controls. The adjusted OR of TKR after ACLi was 6.96 (95% CI 4.73 to 10.31). 4217 (8.48%) individuals in the TKR group had a recorded meniscal injury compared with 669 (0.64%) controls. The adjusted OR of TKR after meniscal injury was 15.24 (95% CI 13.88 to 16.69). CONCLUSION: This study demonstrates that ACLi is associated with a sevenfold increased odds of TKR resulting from OA. Meniscal injury is associated with a 15-fold increase odds of TKR for OA.


Assuntos
Lesões do Ligamento Cruzado Anterior/complicações , Artroplastia do Joelho , Osteoartrite do Joelho/etiologia , Osteoartrite do Joelho/cirurgia , Lesões do Menisco Tibial/complicações , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
10.
J Arthroplasty ; 34(11): 2799-2803, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31301912

RESUMO

BACKGROUND: Although the utility of robotic surgery has already been proven in cadaveric studies, it is our hypothesis that this newly designed robotically assisted system will achieve a high level of accuracy for bone resection. Therefore, we aimed to analyze in a cadaveric study the accuracy to achieve targeted angles and resection thickness. METHODS: For this study, 15 frozen cadaveric specimens (30 knees) were used. In this study, Zimmer Biomet (Warsaw, IN) knees, navigation system, and robot (ROSA Knee System; Zimmer Biomet) were used. Eight trained, board-certified orthopedic surgeons performed robotically assisted total knee arthroplasty implantation using the same robotic protocol with 3 different implant designs. The target angles obtained from the intraoperative planning were then compared to the angles of the bone cuts performed using the robotic system and measured with the computer-assisted system considered to be the gold standard. For each bone cut the resection thickness was measured 3 times by 2 different observers and compared to the values for the planned resections. RESULTS: All angle mean differences were below 1° and standard deviations below 1°. For all 6 angles, the mean differences between the target angle and the measured values were not significantly different from 0 except for the femoral flexion angle which had a mean difference of 0.95°. The mean hip-knee-ankle axis difference was -0.03° ± 0.87°. All resection mean differences were below 0.7 mm and standard deviations below 1.1mm. CONCLUSION: Despite the fact that this study was funded by Zimmer Biomet and only used Zimmer Biomet implants, robot, and navigation tools, the results of our in vitro study demonstrated that surgeons using this new surgical robot in total knee arthroplasty can perform highly accurate bone cuts to achieve the planned angles and resection thickness as measured using conventional navigation.


Assuntos
Artroplastia do Joelho/métodos , Joelho/cirurgia , Procedimentos Cirúrgicos Robóticos/métodos , Cirurgia Assistida por Computador/métodos , Idoso , Idoso de 80 Anos ou mais , Cadáver , Feminino , Fêmur/cirurgia , Humanos , Articulação do Joelho/cirurgia , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
11.
Am J Physiol Heart Circ Physiol ; 315(4): H871-H878, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29957015

RESUMO

Cremaster muscle arteriolar smooth muscle cells (SMCs) display inositol 1,4,5-trisphosphate receptor-dependent Ca2+ waves that contribute to global myoplasmic Ca2+ concentration and myogenic tone. However, the contribution made by voltage-gated Ca2+ channels (VGCCs) to arteriolar SMC Ca2+ waves is unknown. We tested the hypothesis that VGCC activity modulates SMC Ca2+ waves in pressurized (80 cmH2O/59 mmHg, 34°C) hamster cremaster muscle arterioles loaded with Fluo-4 and imaged by confocal microscopy. Removal of extracellular Ca2+ dilated arterioles (32 ± 3 to 45 ± 3 µm, n = 15, P < 0.05) and inhibited the occurrence, amplitude, and frequency of Ca2+ waves ( n = 15, P < 0.05), indicating dependence of Ca2+ waves on Ca2+ influx. Blockade of VGCCs with nifedipine (1 µM) or diltiazem (10 µM) or deactivation of VGCCs by hyperpolarization of smooth muscle with the K+ channel agonist cromakalim (10 µM) produced similar inhibition of Ca2+ waves ( P < 0.05). Conversely, depolarization of SMCs with the K+ channel blocker tetraethylammonium (1 mM) constricted arterioles from 26 ± 3 to 14 ± 2 µm ( n = 11, P < 0.05) and increased wave occurrence (9 ± 3 to 16 ± 3 waves/SMC), amplitude (1.6 ± 0.07 to 1.9 ± 0.1), and frequency (0.5 ± 0.1 to 0.9 ± 0.2 Hz, n = 10, P < 0.05), effects that were blocked by nifedipine (1 µM, P < 0.05). Similarly, the VGCC agonist Bay K8644 (5 nM) constricted arterioles from 14 ± 1 to 8 ± 1 µm and increased wave occurrence (3 ± 1 to 10 ± 1 waves/SMC) and frequency (0.2 ± 0.1 to 0.6 ± 0.1 Hz, n = 6, P < 0.05), effects that were unaltered by ryanodine (50 µM, n = 6, P > 0.05). These data support the hypothesis that Ca2+ waves in arteriolar SMCs depend, in part, on the activity of VGCCs. NEW & NOTEWORTHY Arterioles that control blood flow to and within skeletal muscle depend on Ca2+ influx through voltage-gated Ca2+ channels and release of Ca2+ from internal stores through inositol 1,4,5-trisphosphate receptors in the form of Ca2+ waves to maintain pressure-induced smooth muscle tone.


Assuntos
Músculos Abdominais/irrigação sanguínea , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Ativação do Canal Iônico , Potenciais da Membrana , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Arteríolas/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Técnicas In Vitro , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Mesocricetus , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Vasoconstrição , Vasodilatação
12.
Am J Physiol Heart Circ Physiol ; 314(1): H122-H130, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28842441

RESUMO

Hypertension is a leading risk factor for vascular cognitive impairment and is strongly associated with carotid artery stenosis. In normotensive rats, chronic cerebral hypoperfusion induced by bilateral common carotid artery stenosis (BCAS) leads to cognitive impairment that is associated with impaired endothelium-dependent dilation in parenchymal arterioles (PAs). The aim of this study was to assess the effects of BCAS on PA function and structure in stroke-prone spontaneously hypertensive rats, a model of human essential hypertension. Understanding the effects of hypoperfusion on PAs in a hypertensive model could lead to the identification of therapeutic targets for cognitive decline in a model that reflects the at-risk population. We hypothesized that BCAS would impair endothelium-dependent dilation in PAs and induce artery remodeling compared with sham rats. PAs from BCAS rats had endothelial dysfunction, as assessed using pressure myography. Inhibition of nitric oxide and prostaglandin production had no effect on PA dilation in sham or BCAS rats. Surprisingly, inhibition of epoxyeicosatrienoic acid production increased dilation in PAs from BCAS rats but not from sham rats. Similar results were observed in the presence of inhibitors for all three dilatory pathways, suggesting that epoxygenase inhibition may have restored a nitric oxide/prostaglandin-independent dilatory pathway in PAs from BCAS rats. PAs from BCAS rats underwent remodeling with a reduced wall thickness. These data suggest that marked endothelial dysfunction in PAs from stroke-prone spontaneously hypertensive rats with BCAS may be associated with the development of vascular cognitive impairment. NEW & NOTEWORTHY The present study assessed the structure and function of parenchymal arterioles in a model of chronic cerebral hypoperfusion and hypertension, both of which are risk factors for cognitive impairment. We observed that impaired dilation and artery remodeling in parenchymal arterioles and abolished cerebrovascular reserve capacity may mediate cognitive deficits.


Assuntos
Arteríolas/fisiopatologia , Encéfalo/irrigação sanguínea , Artéria Carótida Primitiva/fisiopatologia , Estenose das Carótidas/fisiopatologia , Circulação Cerebrovascular , Hipertensão/fisiopatologia , Tecido Parenquimatoso/irrigação sanguínea , Vasodilatação , Animais , Arteríolas/metabolismo , Comportamento Animal , Artéria Carótida Primitiva/metabolismo , Estenose das Carótidas/complicações , Estenose das Carótidas/metabolismo , Transtornos Cerebrovasculares/etiologia , Transtornos Cerebrovasculares/metabolismo , Transtornos Cerebrovasculares/fisiopatologia , Transtornos Cerebrovasculares/psicologia , Cognição , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/fisiopatologia , Transtornos Cognitivos/psicologia , Modelos Animais de Doenças , Hipertensão/complicações , Hipertensão/metabolismo , Masculino , Memória , Ratos Endogâmicos SHR , Transdução de Sinais , Remodelação Vascular
13.
Am J Physiol Heart Circ Physiol ; 315(5): H1304-H1315, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30118343

RESUMO

Hypertension and mineralocorticoid receptor activation cause cerebral parenchymal arteriole remodeling; this can limit cerebral perfusion and contribute to cognitive dysfunction. We used a mouse model of angiotensin II-induced hypertension to test the hypothesis that mineralocorticoid receptor activation impairs both transient receptor potential vanilloid (TRPV)4-mediated dilation of cerebral parenchymal arterioles and cognitive function. Mice (16-18 wk old, male, C57Bl/6) were treated with angiotensin II (800 ng·kg-1·min-1) with or without the mineralocorticoid receptor antagonist eplerenone (100 mg·kg-1·day-1) for 4 wk; sham mice served as controls. Data are presented as means ± SE; n = 5-14 mice/group. Eplerenone prevented the increased parenchymal arteriole myogenic tone and impaired carbachol-induced (10-9-10-5 mol/l) dilation observed during hypertension. The carbachol-induced dilation was endothelium-derived hyperpolarization mediated because it could not be blocked by N-nitro-l-arginine methyl ester (10-5 mol/l) and indomethacin (10-4 mol/l). We used GSK2193874 (10-7 mol/l) to confirm that in all groups this dilation was dependent on TRPV4 activation. Dilation in response to the TRPV4 agonist GSK1016790A (10-9-10-5 mol/l) was also reduced in hypertensive mice, and this defect was corrected by eplerenone. In hypertensive and eplerenone-treated animals, TRPV4 inhibition reduced myogenic tone, an effect that was not observed in arterioles from control animals. Eplerenone treatment also improved cognitive function and reduced microglia density in hypertensive mice. These data suggest that the mineralocorticoid receptor is a potential therapeutic target to improve cerebrovascular function and cognition during hypertension. NEW & NOTEWORTHY Vascular dementia is a growing public health issue that lacks effective treatments. Transient receptor potential vanilloid (TRPV)4 channels are important regulators of parenchymal arteriole dilation, and they modulate myogenic tone. The data presented here suggest that TRPV4 channel expression is regulated by the mineralocorticoid receptor (MR). MR blockade also improves cognitive function during hypertension. MR blockade might be a potential therapeutic approach to improve cerebrovascular function and cognition in patients with hypertension.


Assuntos
Anti-Hipertensivos/farmacologia , Arteríolas/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Encéfalo/irrigação sanguínea , Transtornos Cognitivos/prevenção & controle , Cognição/efeitos dos fármacos , Eplerenona/farmacologia , Hipertensão/tratamento farmacológico , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Vasodilatação/efeitos dos fármacos , Angiotensina II , Animais , Arteríolas/metabolismo , Arteríolas/fisiopatologia , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/psicologia , Modelos Animais de Doenças , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Comportamento de Nidação/efeitos dos fármacos , Reconhecimento Psicológico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo
14.
Microcirculation ; 25(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28985443

RESUMO

VSMCs in resistance arteries and arterioles express a diverse array of KV channels with members of the KV 1, KV 2 and KV 7 families being particularly important. Members of the KV channel family: (i) are highly expressed in VSMCs; (ii) are active at the resting membrane potential of VSMCs in vivo (-45 to -30 mV); (iii) contribute to the negative feedback regulation of VSMC membrane potential and myogenic tone; (iv) are activated by cAMP-related vasodilators, hydrogen sulfide and hydrogen peroxide; (v) are inhibited by increases in intracellular Ca2+ and vasoconstrictors that signal through Gq -coupled receptors; (vi) are involved in the proliferative phenotype of VSMCs; and (vii) are modulated by diseases such as hypertension, obesity, the metabolic syndrome and diabetes. Thus, KV channels participate in every aspect of the regulation of VSMC function in both health and disease.


Assuntos
Músculo Liso Vascular/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Animais , Arteríolas/fisiologia , Humanos , Vasoconstrição , Vasodilatação
16.
Knee Surg Sports Traumatol Arthrosc ; 26(6): 1662-1670, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28831554

RESUMO

PURPOSE: Patient-specific instrumentation (PSI) has been proposed as a means of improving surgical accuracy and ease of implantation during technically challenging procedures such as unicompartmental knee arthroplasty (UKA). The purpose of this prospective randomised controlled trial was to compare the accuracy of implantation and functional outcome of mobile-bearing medial UKAs implanted with and without PSI by experienced UKA surgeons. METHODS: Mobile-bearing medial UKAs were implanted in 43 patients using either PSI guides or conventional instrumentation. Intra-operative measurements, meniscal bearing size implanted, and post-operative radiographic analyses were performed to assess component positioning. Functional outcome was determined using the Oxford Knee Score (OKS). RESULTS: PSI guides could not be used in three cases due to concerns regarding accuracy and registration onto native anatomy, particularly on the tibial side. In general, similar component alignment and positioning was achieved using the two systems (n.s. for coronal/sagittal alignment and tibial coverage). The PSI group had greater tibial slope (p = 0.029). The control group had a higher number of optimum size meniscal bearing inserted (95 vs 52%; p = 0.001). There were no differences in OKS improvements (n.s). CONCLUSION: Component positioning for the two groups was similar for the femur but less accurate on the tibial side using PSI, often with some unnecessarily deep resections of the tibial plateau. Although PSI was comparable to conventional instrumentation based on OKS improvements at 12 months, we continue to use conventional instrumentation for UKA at our institution until further improvements to the PSI guides can be demonstrated. LEVEL OF EVIDENCE: Therapeutic, Level I.


Assuntos
Artroplastia do Joelho/instrumentação , Artropatias/cirurgia , Articulação do Joelho/cirurgia , Idoso , Idoso de 80 Anos ou mais , Artroplastia do Joelho/normas , Feminino , Humanos , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Modelagem Computacional Específica para o Paciente , Estudos Prospectivos , Recuperação de Função Fisiológica , Cirurgia Assistida por Computador
19.
Am J Physiol Heart Circ Physiol ; 313(3): H667-H675, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28667050

RESUMO

Myogenic tone is an important feature of arterioles and resistance arteries, but the mechanisms responsible for this hallmark characteristic remain unclear. We used pharmacological inhibitors to compare the roles played by phospholipase C (PLC; 10 µM U73122), inositol 1,4,5-trisphosphate receptors (IP3Rs; 100 µM 2-aminoethoxydiphenylborane), protein kinase C (10 µM bisindolylmaleimide I), angiotensin II type 1 receptors (1 µM losartan), Rho kinase (10 nM-30 µM Y27632 or 300 nM H1152), stretch-activated ion channels (10 nM-1 µM Gd3+ or 5 µM spider venom toxin GsMTx-4) and L-type voltage-gated Ca2+ channels (0.3-100 µM diltiazem) in myogenic tone of cannulated, pressurized (80 cmH2O), second-order hamster cremaster or cheek pouch arterioles. Effective inhibition of either PLC or IP3Rs dilated cremaster arterioles, inhibited Ca2+ waves, and reduced global Ca2+ levels. In contrast, cheek pouch arterioles did not display Ca2+ waves and inhibition of PLC or IP3Rs had no effect on myogenic tone or intracellular Ca2+ levels. Inhibition of Rho kinase dilated both cheek pouch and cremaster arterioles with equal efficacy and potency but also reduced intracellular Ca2+ signals in both arterioles. Similarly, inhibition of mechanosensitive ion channels with Gd2+ or GsMTx-4 produced comparable dilation in both arterioles. Inhibition of L-type Ca2+ channels with diltiazem was more effective in dilating cremaster (86 ± 5% dilation, n = 4) than cheek pouch arterioles (54 ± 4% dilation, n = 6, P < 0.05). Thus, there are substantial differences in the mechanisms underlying myogenic tone in hamster cremaster and cheek pouch arterioles. Regional heterogeneity in myogenic mechanisms could provide new targets for drug development to improve regional blood flow in a tissue-specific manner.NEW & NOTEWORTHY Regional heterogeneity in the mechanisms of pressure-induced myogenic tone implies that resistance vessels may be able to alter myogenic signaling pathways to adapt to their environment. A better understanding of the spectrum of myogenic mechanisms could provide new targets to treat diseases that affect resistance artery and arteriolar function.


Assuntos
Músculos Abdominais/irrigação sanguínea , Arteríolas/fisiologia , Sinalização do Cálcio , Bochecha/irrigação sanguínea , Mecanotransdução Celular , Vasoconstrição , Vasodilatação , Animais , Arteríolas/efeitos dos fármacos , Arteríolas/metabolismo , Pressão Sanguínea , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Relação Dose-Resposta a Droga , Técnicas In Vitro , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Mecanotransdução Celular/efeitos dos fármacos , Mesocricetus , Microcirculação , Especificidade de Órgãos , Proteína Quinase C/metabolismo , Fatores de Tempo , Fosfolipases Tipo C/metabolismo , Resistência Vascular , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
20.
Am J Physiol Heart Circ Physiol ; 312(6): H1203-H1214, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28432059

RESUMO

Inward rectifier K+ channels (KIR) may contribute to skeletal muscle blood flow regulation and adapt to advanced age. Using mouse abdominal wall superior epigastric arteries (SEAs) from either young (3-6 mo) or old (24-26 mo) male C57BL/6 mice, we investigated whether SEA smooth muscle cells (SMCs) express functional KIR channels and how aging may affect KIR function. Freshly dissected SEAs were either enzymatically dissociated to isolate SMCs for electrophysiological recording (perforated patch) and mRNA expression or used intact for pressure myography. With 5 mM extracellular K+ concentration ([K+]o), exposure of SMCs to the KIR blocker Ba2+ (100 µM) had no significant effect (P > 0.05) on whole cell currents elicited by membrane potentials spanning -120 to -30 mV. Raising [K+]o to 15 mM activated Ba2+-sensitive KIR currents between -120 and -30 mV, which were greater in SMCs from old mice than in SMCs from young mice (P < 0.05). Pressure myography of SEAs revealed that while aging decreased maximum vessel diameter by ~8% (P < 0.05), it had no significant effect on resting diameter, myogenic tone, dilation to 15 mM [K+]o, Ba2+-induced constriction in 5 mM [K+]o, or constriction induced by 15 mM [K+]o in the presence of Ba2+ (P > 0.05). Quantitative RT-PCR revealed SMC expression of KIR2.1 and KIR2.2 mRNA that was not affected by age. Barium-induced constriction of SEAs from young and old mice suggests an integral role for KIR in regulating resting membrane potential and vasomotor tone. Increased functional expression of KIR channels during advanced age may compensate for other age-related changes in SEA function.NEW & NOTEWORTHY Ion channels are integral to blood flow regulation. We found greater functional expression of inward rectifying K+ channels in smooth muscle cells of resistance arteries of mouse skeletal muscle with advanced age. This adaptation to aging may contribute to the maintenance of vasomotor tone and blood flow regulation during exercise.


Assuntos
Envelhecimento/metabolismo , Hemodinâmica , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Adaptação Fisiológica , Fatores Etários , Envelhecimento/genética , Animais , Artérias Epigástricas/metabolismo , Masculino , Mecanotransdução Celular , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Canais de Potássio Corretores do Fluxo de Internalização/genética , Fluxo Sanguíneo Regional , Regulação para Cima , Resistência Vascular , Vasoconstrição , Vasodilatação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA