Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 18(25): 4660-4666, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35543353

RESUMO

Shape-changing objects are prized for applications ranging from acoustics to robotics. We report sub-millimetre bubbles that reversibly and rapidly change not only their shape but also their topological class, from sphere to torus, when subjected to a simple pressure treatment. Stabilized by a solid-like film of nanoscopic protein "particles", the bubbles may persist in toroidal form for several days, most of them with the relative dimensions expected of Clifford tori. The ability to cross topological classes reversibly and quickly is enabled by the expulsion of protein from the strained surfaces in the form of submicron assemblies. Compared to structural modifications of liquid-filled vesicles, for example by slow changes in solution osmolality, the rapid inducement of shape changes in bubbles by application of pressure may hasten experimental investigations of surface mechanics, even as it suggests new routes to lightweight materials with high surface areas.


Assuntos
Pressão , Propriedades de Superfície
2.
Langmuir ; 32(49): 13137-13148, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27951711

RESUMO

Liquid crystals can organize dispersed particles into useful and exotic structures. In the case of lyotropic cholesteric polypeptide liquid crystals, polypeptide-coated particles are appealing because the surface chemistry matches that of the polymeric mesogen, which permits a tighter focus on factors such as extended particle shape. The colloidal particles developed here consist of a magnetic and fluorescent cylindrically symmetric silica core with one rounded, almost hemispherical end. Functionalized with helical poly(γ-stearyl-l-glutamate) (PSLG), the particles were dispersed at different concentrations in cholesteric liquid crystals (ChLC) of the same polymer in tetrahydrofuran (THF). Defects introduced by the particles to the director field of the bulk PSLG/THF host led to a variety of phases. In fresh mixtures, the cholesteric mesophase of the PSLG matrix was distorted, as reflected in the absence of the characteristic fingerprint pattern. Over time, the fingerprint pattern returned, more quickly when the concentration of the PSLG-coated particles was low. At low particle concentration the particles were "guided" by the PSLG liquid crystal to organize into patterns similar to that of the re-formed bulk chiral nematic phase. When their concentration increased, the well-dispersed PSLG-coated particles seemed to map onto the distortions in the bulk host's local director field. The particles located near the glass vial-ChLC interfaces were stacked lengthwise into architectures with apparent two-dimensional hexagonal symmetry. The size of these "crystalline" structures increased with particle concentration. They displayed remarkable stability toward an external magnetic field; hydrophobic interactions between the PSLG polymers in the shell and those in the bulk LC matrix may be responsible. The results show that bio-inspired LCs can assemble suitable colloidal particles into soft crystalline structures.


Assuntos
Cristais Líquidos , Peptídeos/química , Polímeros , Dióxido de Silício , Campos Magnéticos
3.
Elife ; 92020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32940598

RESUMO

Reproductive division of labor (e.g. germ-soma specialization) is a hallmark of the evolution of multicellularity, signifying the emergence of a new type of individual and facilitating the evolution of increased organismal complexity. A large body of work from evolutionary biology, economics, and ecology has shown that specialization is beneficial when further division of labor produces an accelerating increase in absolute productivity (i.e. productivity is a convex function of specialization). Here we show that reproductive specialization is qualitatively different from classical models of resource sharing, and can evolve even when the benefits of specialization are saturating (i.e. productivity is a concave function of specialization). Through analytical theory and evolutionary individual-based simulations, we demonstrate that reproductive specialization is strongly favored in sparse networks of cellular interactions that reflect the morphology of early, simple multicellular organisms, highlighting the importance of restricted social interactions in the evolution of reproductive specialization.


Assuntos
Evolução Biológica , Comunicação Celular , Reprodução , Células Germinativas , Modelos Biológicos
4.
Nat Phys ; 14: 286-290, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31723354

RESUMO

The evolution of multicellularity set the stage for sustained increases in organismal complexity1-5. However, a fundamental aspect of this transition remains largely unknown: how do simple clusters of cells evolve increased size when confronted by forces capable of breaking intracellular bonds? Here we show that multicellular snowflake yeast clusters6-8 fracture due to crowding-induced mechanical stress. Over seven weeks (~291 generations) of daily selection for large size, snowflake clusters evolve to increase their radius 1.7-fold by reducing the accumulation of internal stress. During this period, cells within the clusters evolve to be more elongated, concomitant with a decrease in the cellular volume fraction of the clusters. The associated increase in free space reduces the internal stress caused by cellular growth, thus delaying fracture and increasing cluster size. This work demonstrates how readily natural selection finds simple, physical solutions to spatial constraints that limit the evolution of group size-a fundamental step in the evolution of multicellularity.

5.
Phys Rev E ; 97(5-1): 050401, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29906891

RESUMO

The evolutionary transition to multicellularity transformed life on earth, heralding the evolution of large, complex organisms. Recent experiments demonstrated that laboratory-evolved multicellular "snowflake yeast" readily overcome the physical barriers that limit cluster size by modifying cellular geometry [Jacobeen et al., Nat. Phys. 14, 286 (2018)10.1038/s41567-017-0002-y]. However, it is unclear why this route to large size is observed, rather than an evolved increase in intercellular bond strength. Here, we use a geometric model of the snowflake yeast growth form to examine the geometric efficiency of increasing size by modifying geometry and bond strength. We find that changing geometry is a far more efficient route to large size than evolving increased intercellular adhesion. In fact, increasing cellular aspect ratio is on average ∼13 times more effective than increasing bond strength at increasing the number of cells in a cluster. Modifying other geometric parameters, such as the geometric arrangement of mother and daughter cells, also had larger effects on cluster size than increasing bond strength. Simulations reveal that as cells reproduce, internal stress in the cluster increases rapidly; thus, increasing bond strength provides diminishing returns in cluster size. Conversely, as cells become more elongated, cellular packing density within the cluster decreases, which substantially decreases the rate of internal stress accumulation. This suggests that geometrically imposed physical constraints may have been a key early selective force guiding the emergence of multicellular complexity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA