Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Virol ; 89(16): 8525-39, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26041302

RESUMO

UNLABELLED: We compared the HIV-1-specific cellular and humoral immune responses elicited in rhesus macaques immunized with two poxvirus vectors (NYVAC and ALVAC) expressing the same HIV-1 antigens from clade C, Env gp140 as a trimeric cell-released protein and a Gag-Pol-Nef polyprotein as Gag-induced virus-like particles (VLPs) (referred to as NYVAC-C and ALVAC-C). The immunization protocol consisted of two doses of the corresponding poxvirus vector plus two doses of a combination of the poxvirus vector and a purified HIV-1 gp120 protein from clade C. This immunogenicity profile was also compared to that elicited by vaccine regimens consisting of two doses of the ALVAC vector expressing HIV-1 antigens from clades B/E (ALVAC-vCP1521) plus two doses of a combination of ALVAC-vCP1521 and HIV-1 gp120 protein from clades B/E (similar to the RV144 trial regimen) or clade C. The results showed that immunization of macaques with NYVAC-C stimulated at different times more potent HIV-1-specific CD4(+) T-cell responses and induced a trend toward higher-magnitude HIV-1-specific CD8(+) T-cell immune responses than did ALVAC-C. Furthermore, NYVAC-C induced a trend toward higher levels of binding IgG antibodies against clade C HIV-1 gp140, gp120, or murine leukemia virus (MuLV) gp70-scaffolded V1/V2 and toward best cross-clade-binding IgG responses against HIV-1 gp140 from clades A, B, and group M consensus, than did ALVAC-C. Of the linear binding IgG responses, most were directed against the V3 loop in all immunization groups. Additionally, NYVAC-C and ALVAC-C also induced similar levels of HIV-1-neutralizing antibodies and antibody-dependent cellular cytotoxicity (ADCC) responses. Interestingly, binding IgA antibody levels against HIV-1 gp120 or MuLV gp70-scaffolded V1/V2 were absent or very low in all immunization groups. Overall, these results provide a comprehensive survey of the immunogenicity of NYVAC versus ALVAC expressing HIV-1 antigens in nonhuman primates and indicate that NYVAC may represent an alternative candidate to ALVAC in the development of a future HIV-1 vaccine. IMPORTANCE: The finding of a safe and effective HIV/AIDS vaccine immunogen is one of the main research priorities. Here, we generated two poxvirus-based HIV vaccine candidates (NYVAC and ALVAC vectors) expressing the same clade C HIV-1 antigens in separate vectors, and we analyzed in nonhuman primates their immunogenicity profiles. The results showed that immunization with NYVAC-C induced a trend toward higher HIV-1-specific cellular and humoral immune responses than did ALVAC-C, indicating that this new NYVAC vector could be a novel optimized HIV/AIDS vaccine candidate for human clinical trials.


Assuntos
Vacinas contra a AIDS/imunologia , Produtos do Gene env/metabolismo , Vetores Genéticos/imunologia , Infecções por HIV/prevenção & controle , Vacinas Sintéticas/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes , Embrião de Galinha , Anticorpos Anti-HIV , Antígenos HIV/metabolismo , Macaca mulatta , Poxviridae/genética , Regiões Promotoras Genéticas/genética , Ensaio de Placa Viral
2.
Artigo em Inglês | MEDLINE | ID: mdl-27013847

RESUMO

Microbial contamination of cell culture is a major problem encountered both in academic labs and in the biotechnology/pharmaceutical industries. A broad spectrum of microbes including mycoplasma, bacteria, fungi, and viruses are the causative agents of cell culture contamination. Unfortunately, the existing disinfection techniques lack selectivity and/or lead to the development of drug-resistance, and more importantly there is no universal method to address all microbes. Here, we report a novel, chemical-free visible ultrashort pulsed laser method for cell culture disinfection. The ultrashort pulsed laser technology inactivates pathogens with mechanical means, a paradigm shift from the traditional pharmaceutical and chemical approaches. We demonstrate that ultrashort pulsed laser treatment can efficiently inactivate mycoplasma, bacteria, yeast, and viruses with good preservation of mammalian cell viability. Our results indicate that this ultrashort pulsed laser technology has the potential to serve as a universal method for the disinfection of cell culture.

3.
PLoS One ; 9(11): e111673, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25372037

RESUMO

Pathogen reduction is a viable approach to ensure the continued safety of the blood supply against emerging pathogens. However, the currently licensed pathogen reduction techniques are ineffective against non-enveloped viruses such as hepatitis A virus, and they introduce chemicals with concerns of side effects which prevent their widespread use. In this report, we demonstrate the inactivation of both enveloped and non-enveloped viruses in human plasma using a novel chemical-free method, a visible ultrashort pulsed laser. We found that laser treatment resulted in 2-log, 1-log, and 3-log reductions in human immunodeficiency virus, hepatitis A virus, and murine cytomegalovirus in human plasma, respectively. Laser-treated plasma showed ≥70% retention for most coagulation factors tested. Furthermore, laser treatment did not alter the structure of a model coagulation factor, fibrinogen. Ultrashort pulsed lasers are a promising new method for chemical-free, broad-spectrum pathogen reduction in human plasma.


Assuntos
Segurança do Sangue/métodos , Patógenos Transmitidos pelo Sangue/efeitos da radiação , Lasers , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Humanos , Agregação Patológica de Proteínas , Inativação de Vírus/efeitos da radiação
4.
J Biomed Opt ; 14(6): 064042, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20059280

RESUMO

We report a photonic approach for selective inactivation of viruses with a near-infrared subpicosecond laser. We demonstrate that this method can selectively inactivate viral particles ranging from nonpathogenic viruses such as the M13 bacteriophage and the tobacco mosaic virus to pathogenic viruses such as the human papillomavirus and the human immunodeficiency virus (HIV). At the same time, sensitive materials such as human Jurkat T cells, human red blood cells, and mouse dendritic cells remain unharmed. The laser technology targets the global mechanical properties of the viral protein shell, making it relatively insensitive to the local genetic mutation in the target viruses. As a result, the approach can inactivate both the wild and mutated strains of viruses. This intriguing advantage is particularly important in the treatment of diseases involving rapidly mutating viral species such as HIV. Our photonic approach could be used for the disinfection of viral pathogens in blood products and for the treatment of blood-borne viral diseases in the clinic.


Assuntos
Lasers , Óptica e Fotônica/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Inativação de Vírus/efeitos da radiação , Vírus/efeitos da radiação , Alphapapillomavirus/fisiologia , Alphapapillomavirus/efeitos da radiação , Animais , Bacteriófago M13/fisiologia , Bacteriófago M13/efeitos da radiação , Células Cultivadas , Células Dendríticas/efeitos da radiação , Eritrócitos/efeitos da radiação , HIV/fisiologia , HIV/efeitos da radiação , Humanos , Células Jurkat/efeitos da radiação , Camundongos , Microscopia de Força Atômica , Vírus do Mosaico do Tabaco/fisiologia , Vírus do Mosaico do Tabaco/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA