Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(27): e2115538119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35759666

RESUMO

Blue cone monochromacy (BCM) is an X-linked retinal disorder characterized by low vision, photoaversion, and poor color discrimination. BCM is due to the lack of long-wavelength-sensitive and middle-wavelength-sensitive cone photoreceptor function and caused by mutations in the OPN1LW/OPN1MW gene cluster on Xq28. Here, we investigated the prevalence and the landscape of submicroscopic structural variants (SVs) at single-base resolution in BCM patients. We found that about one-third (n = 73) of the 213 molecularly confirmed BCM families carry an SV, most commonly deletions restricted to the OPN1LW/OPN1MW gene cluster. The structure and precise breakpoints of the SVs were resolved in all but one of the 73 families. Twenty-two families-all from the United States-showed the same SV, and we confirmed a common ancestry of this mutation. In total, 42 distinct SVs were identified, including 40 previously unreported SVs, thereby quadrupling the number of precisely mapped SVs underlying BCM. Notably, there was no "region of overlap" among these SVs. However, 90% of SVs encompass the upstream locus control region, an essential enhancer element. Its minimal functional extent based on deletion mapping in patients was refined to 358 bp. Breakpoint analyses suggest diverse mechanisms underlying SV formation as well as in one case the gene conversion-based exchange of a 142-bp deletion between opsin genes. Using parsimonious assumptions, we reconstructed the composition and copy number of the OPN1LW/OPN1MW gene cluster prior to the mutation event and found evidence that large gene arrays may be predisposed to the occurrence of SVs at this locus.


Assuntos
Defeitos da Visão Cromática , Opsinas de Bastonetes , Defeitos da Visão Cromática/genética , Deleção de Genes , Humanos , Família Multigênica/genética , Células Fotorreceptoras Retinianas Cones , Opsinas de Bastonetes/genética
2.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256083

RESUMO

Modern advances in disease genetics have uncovered numerous modifier genes that play a role in the severity of disease expression. One such class of genetic conditions is known as inherited retinal degenerations (IRDs), a collection of retinal degenerative disorders caused by mutations in over 300 genes. A single missense mutation (K42E) in the gene encoding the enzyme dehydrodolichyl diphosphate synthase (DHDDS), which is required for protein N-glycosylation in all cells and tissues, causes DHDDS-IRD (retinitis pigmentosa type 59 (RP59; OMIM #613861)). Apart from a retinal phenotype, however, DHDDS-IRD is surprisingly non-syndromic (i.e., without any systemic manifestations). To explore disease pathology, we selected five glycosylation-related genes for analysis that are suggested to have disease modifier variants. These genes encode glycosyltransferases (ALG6, ALG8), an ER resident protein (DDOST), a high-mannose oligosaccharyl transferase (MPDU1), and a protein N-glycosylation regulatory protein (TNKS). DNA samples from 11 confirmed DHDDS (K42E)-IRD patients were sequenced at the site of each candidate genetic modifier. Quantitative measures of retinal structure and function were performed across five decades of life by evaluating foveal photoreceptor thickness, visual acuity, foveal sensitivity, macular and extramacular rod sensitivity, and kinetic visual field extent. The ALG6 variant, (F304S), was correlated with greater macular cone disease severity and less peripheral rod disease severity. Thus, modifier gene polymorphisms may account for a significant portion of phenotypic variation observed in human genetic disease. However, the consequences of the polymorphisms may be counterintuitively complex in terms of rod and cone populations affected in different regions of the retina.


Assuntos
Alquil e Aril Transferases , Glucosiltransferases , Proteínas de Membrana , Degeneração Retiniana , Humanos , Genes Modificadores , Glucosiltransferases/genética , Proteínas de Membrana/genética , Mutação , Retina , Degeneração Retiniana/genética
3.
Hum Mol Genet ; 29(22): 3706-3716, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33355362

RESUMO

Mutations in retinitis pigmentosa GTPase regulator (RPGR) cause severe retinal ciliopathy, X-linked retinitis pigmentosa. Although two major alternatively spliced isoforms, RPGRex1-19 and RPGRORF15, are expressed, the relative importance of these isoforms in disease pathogenesis is unclear. Here, we analyzed fibroblast samples from eight patients and found that all of them form longer cilia than normal controls, albeit to different degrees. Although all mutant RPGRORF15 messenger RNAs (mRNAs) are unstable, their steady-state levels were similar or higher than those in the control cells, suggesting there may be increased transcription. Three of the fibroblasts that had higher levels of mutant RPGRORF15 mRNA also exhibited significantly higher levels of RPGRex1-19 mRNA. Four samples with unaltered RPGRex1-19 levels carried mutations in RPGRORF15 that resulted in this isoform being relatively less stable. Thus, in all cases, the RPGRex1-19/RPGRORF15 isoform ratio was increased, and this was highly correlative to the cilia extension defect. Moreover, overexpression of RPGRex1-19 (mimicking the increase in RPGRex1-19 to RPGRORF15 isoform ratio) or RPGRORF15 (mimicking reduction of the ratio) resulted in significantly longer or shorter cilia, respectively. Notably, the cilia length defect appears to be attributable to both the loss of the wild-type RPGRORF15 protein and to the higher levels of the RPGRex1-19 isoform, indicating that the observed defect is due to the altered isoform ratios. These results suggest that maintaining the optimal RPGRex1-9 to RPGRORF15 ratio is critical for cilia growth and that designing strategies that focus on the best ways to restore the RPGRex1-19/RPGRORF15 ratio may lead to better therapeutic outcomes.


Assuntos
Proteínas do Olho/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Retinose Pigmentar/genética , Processamento Alternativo/genética , Proteínas de Transporte/genética , Cílios/genética , Cílios/patologia , Éxons/genética , Feminino , Fibroblastos , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Masculino , Mutação/genética , Isoformas de Proteínas/genética , Retina/metabolismo , Retina/patologia , Retinose Pigmentar/patologia
4.
Hum Mutat ; 43(7): 832-858, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35332618

RESUMO

Achromatopsia (ACHM) is a congenital cone photoreceptor disorder characterized by impaired color discrimination, low visual acuity, photosensitivity, and nystagmus. To date, six genes have been associated with ACHM (CNGA3, CNGB3, GNAT2, PDE6C, PDE6H, and ATF6), the majority of these being implicated in the cone phototransduction cascade. CNGA3 encodes the CNGA3 subunit of the cyclic nucleotide-gated ion channel in cone photoreceptors and is one of the major disease-associated genes for ACHM. Herein, we provide a comprehensive overview of the CNGA3 variant spectrum in a cohort of 1060 genetically confirmed ACHM patients, 385 (36.3%) of these carrying "likely disease-causing" variants in CNGA3. Compiling our own genetic data with those reported in the literature and in public databases, we further extend the CNGA3 variant spectrum to a total of 316 variants, 244 of which we interpreted as "likely disease-causing" according to ACMG/AMP criteria. We report 48 novel "likely disease-causing" variants, 24 of which are missense substitutions underlining the predominant role of this mutation class in the CNGA3 variant spectrum. In addition, we provide extensive in silico analyses and summarize reported functional data of previously analyzed missense, nonsense and splicing variants to further advance the pathogenicity assessment of the identified variants.


Assuntos
Defeitos da Visão Cromática , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Defeitos da Visão Cromática/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Humanos , Mutação , Células Fotorreceptoras Retinianas Cones
5.
Mol Ther ; 29(8): 2456-2468, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-33781914

RESUMO

The inherited childhood blindness caused by mutations in NPHP5, a form of Leber congenital amaurosis, results in abnormal development, dysfunction, and degeneration of photoreceptors. A naturally occurring NPHP5 mutation in dogs leads to a phenotype that very nearly duplicates the human retinopathy in terms of the photoreceptors involved, spatial distribution of degeneration, and the natural history of vision loss. We show that adeno-associated virus (AAV)-mediated NPHP5 gene augmentation of mutant canine retinas at the time of active degeneration and peak cell death stably restores photoreceptor structure, function, and vision with either the canine or human NPHP5 transgenes. Mutant cone photoreceptors, which failed to form outer segments during development, reform this structure after treatment. Degenerating rod photoreceptor outer segments are stabilized and develop normal structure. This process begins within 8 weeks after treatment and remains stable throughout the 6-month posttreatment period. In both photoreceptor cell classes mislocalization of rod and cone opsins is minimized or reversed. Retinal function and functional vision are restored. Efficacy of gene therapy in this large animal ciliopathy model of Leber congenital amaurosis provides a path for translation to human treatment.


Assuntos
Proteínas de Ligação a Calmodulina/administração & dosagem , Dependovirus/genética , Amaurose Congênita de Leber/terapia , Células Fotorreceptoras Retinianas Cones/patologia , Animais , Proteínas de Ligação a Calmodulina/farmacologia , Modelos Animais de Doenças , Cães , Eletrorretinografia , Terapia Genética , Vetores Genéticos/administração & dosagem , Humanos , Amaurose Congênita de Leber/genética , Resultado do Tratamento
6.
BMC Ophthalmol ; 22(1): 266, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701753

RESUMO

BACKGROUND: Inherited retinal degenerations (IRDs) affect daylight and night vision to different degrees. In the current work, we devise a method to quantify mobility under dark-adapted conditions in patients with severe childhood blindness due to Leber congenital amaurosis (LCA). Mobility thresholds from two different LCA genotypes are compared to dark-adapted vision measurements using the full-field stimulus test (FST), a conventional desktop outcome measure of rod vision. METHODS: A device consisting of vertical LED strips on a plane resembling a beaded curtain was programmed to produce a rectangular pattern target defining a 'door' of varying luminance that could appear at one of three positions. Mobility performance was evaluated by letting the subject walk from a fixed starting position ~ 4 m away from the device with instructions to touch the door. Success was defined as the subject touching within the 'door' area. Ten runs were performed and the process was repeated for different levels of luminance. Tests were performed monocularly in dark-adapted and dilated eyes. Results from LCA patients with the GUCY2D and CEP290 genotypes and normal subjects were analyzed using logistic regression to estimate the mobility threshold for successful navigation. The relation of thresholds for mobility, FST and visual acuity were quantified using linear regression. RESULTS: Normal subjects had mobility thresholds near limits of dark-adapted rod vision. GUCY2D-LCA patients had a wide range of mobility thresholds from within 1 log of normal to greater than 8 log abnormal. CEP290-LCA patients had abnormal mobility thresholds that were between 5 and 6 log from normal. Sensitivity loss estimates using FST related linearly to the mobility thresholds which were not correlated with visual acuity. CONCLUSIONS: The mobility task we developed can quantify functional vision in severely disabled patients with LCA. Taken together with other outcome measures of rod and cone photoreceptor-mediated vision, dark-adapted functional vision should provide a more complete understanding of the natural history and effects of treatment in patients with LCA.


Assuntos
Amaurose Congênita de Leber , Degeneração Retiniana , Antígenos de Neoplasias/genética , Proteínas de Ciclo Celular/genética , Criança , Proteínas do Citoesqueleto/genética , Adaptação à Escuridão , Humanos , Amaurose Congênita de Leber/diagnóstico , Amaurose Congênita de Leber/genética , Mutação , Células Fotorreceptoras Retinianas Cones , Visão Ocular
7.
Mol Ther ; 28(1): 266-278, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31604676

RESUMO

The form of hereditary childhood blindness Leber congenital amaurosis (LCA) caused by biallelic RPE65 mutations is considered treatable with a gene therapy product approved in the US and Europe. The resulting vision improvement is well accepted, but long-term outcomes on the natural history of retinal degeneration are controversial. We treated four RPE65-mutant dogs in mid-life (age = 5-6 years) and followed them long-term (4-5 years). At the time of the intervention at mid-life, there were intra-ocular and inter-animal differences in local photoreceptor layer health ranging from near normal to complete degeneration. Treated locations having more than 63% of normal photoreceptors showed robust treatment-related retention of photoreceptors in the long term. Treated regions with less retained photoreceptors at the time of the intervention showed progressive degeneration similar to untreated regions with matched initial stage of disease. Unexpectedly, both treated and untreated regions in study eyes tended to show less degeneration compared to matched locations in untreated control eyes. These results support the hypothesis that successful long-term arrest of progression with RPE65 gene therapy may only occur in retinal regions with relatively retained photoreceptors at the time of the intervention, and there may be heretofore unknown mechanisms causing long-distance partial treatment effects beyond the region of subretinal injection.


Assuntos
Terapia Genética/métodos , Amaurose Congênita de Leber/terapia , Mutação , Degeneração Retiniana/genética , cis-trans-Isomerases/genética , Animais , Modelos Animais de Doenças , Cães , Eletrorretinografia , Feminino , Seguimentos , Amaurose Congênita de Leber/diagnóstico por imagem , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/diagnóstico por imagem , Retina/metabolismo , Degeneração Retiniana/diagnóstico por imagem , Resultado do Tratamento , Visão Ocular
8.
Proc Natl Acad Sci U S A ; 115(12): E2839-E2848, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507198

RESUMO

Mutations in the BEST1 gene cause detachment of the retina and degeneration of photoreceptor (PR) cells due to a primary channelopathy in the neighboring retinal pigment epithelium (RPE) cells. The pathophysiology of the interaction between RPE and PR cells preceding the formation of retinal detachment remains not well-understood. Our studies of molecular pathology in the canine BEST1 disease model revealed retina-wide abnormalities at the RPE-PR interface associated with defects in the RPE microvillar ensheathment and a cone PR-associated insoluble interphotoreceptor matrix. In vivo imaging demonstrated a retina-wide RPE-PR microdetachment, which contracted with dark adaptation and expanded upon exposure to a moderate intensity of light. Subretinal BEST1 gene augmentation therapy using adeno-associated virus 2 reversed not only clinically detectable subretinal lesions but also the diffuse microdetachments. Immunohistochemical analyses showed correction of the structural alterations at the RPE-PR interface in areas with BEST1 transgene expression. Successful treatment effects were demonstrated in three different canine BEST1 genotypes with vector titers in the 0.1-to-5E11 vector genomes per mL range. Patients with biallelic BEST1 mutations exhibited large regions of retinal lamination defects, severe PR sensitivity loss, and slowing of the retinoid cycle. Human translation of canine BEST1 gene therapy success in reversal of macro- and microdetachments through restoration of cytoarchitecture at the RPE-PR interface has promise to result in improved visual function and prevent disease progression in patients affected with bestrophinopathies.


Assuntos
Bestrofinas/genética , Oftalmopatias Hereditárias/terapia , Terapia Genética/métodos , Doenças Retinianas/terapia , Animais , Doenças do Cão/terapia , Cães , Oftalmopatias Hereditárias/diagnóstico por imagem , Oftalmopatias Hereditárias/patologia , Oftalmopatias Hereditárias/veterinária , Feminino , Vetores Genéticos/farmacologia , Humanos , Luz , Masculino , Mutação , Descolamento Retiniano/diagnóstico por imagem , Descolamento Retiniano/patologia , Descolamento Retiniano/terapia , Doenças Retinianas/diagnóstico por imagem , Doenças Retinianas/patologia , Doenças Retinianas/veterinária , Epitélio Pigmentado da Retina/patologia , Tomografia de Coerência Óptica
9.
Proc Natl Acad Sci U S A ; 115(36): E8547-E8556, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30127005

RESUMO

Inherited retinal degenerations are caused by mutations in >250 genes that affect photoreceptor cells or the retinal pigment epithelium and result in vision loss. For autosomal recessive and X-linked retinal degenerations, significant progress has been achieved in the field of gene therapy as evidenced by the growing number of clinical trials and the recent commercialization of the first gene therapy for a form of congenital blindness. However, despite significant efforts to develop a treatment for the most common form of autosomal dominant retinitis pigmentosa (adRP) caused by >150 mutations in the rhodopsin (RHO) gene, translation to the clinic has stalled. Here, we identified a highly efficient shRNA that targets human (and canine) RHO in a mutation-independent manner. In a single adeno-associated viral (AAV) vector we combined this shRNA with a human RHO replacement cDNA made resistant to RNA interference and tested this construct in a naturally occurring canine model of RHO-adRP. Subretinal vector injections led to nearly complete suppression of endogenous canine RHO RNA, while the human RHO replacement cDNA resulted in up to 30% of normal RHO protein levels. Noninvasive retinal imaging showed photoreceptors in treated areas were completely protected from retinal degeneration. Histopathology confirmed retention of normal photoreceptor structure and RHO expression in rod outer segments. Long-term (>8 mo) follow-up by retinal imaging and electroretinography indicated stable structural and functional preservation. The efficacy of this gene therapy in a clinically relevant large-animal model paves the way for treating patients with RHO-adRP.


Assuntos
Dependovirus , Técnicas de Introdução de Genes/métodos , Técnicas de Silenciamento de Genes/métodos , Terapia Genética/métodos , Vetores Genéticos , RNA Catalítico , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinose Pigmentar , Rodopsina , Animais , Cães , Células HEK293 , Humanos , RNA Catalítico/biossíntese , RNA Catalítico/genética , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia , Rodopsina/biossíntese , Rodopsina/genética
10.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670772

RESUMO

Gene augmentation therapy is being planned for GUCY2D-associated Leber congenital amaurosis (LCA). To increase our understanding of the natural history of GUCY2D-LCA, patients were evaluated twice with an interval of 4 to 7 years between visits using safety and efficacy outcome measures previously determined to be useful for monitoring this disorder. In this group of molecularly-identified LCA patients (n = 10; ages 7-37 years at first visit), optical coherence tomography (OCT) was used to measure foveal cone outer nuclear layer (ONL) thickness and rod ONL at a superior retinal locus. Full-field stimulus testing (FST) with chromatic stimuli in dark- and light-adapted states was used to assay rod and cone vision. Changes in OCT and FST over the interval were mostly attributable to inter-visit variability. There were no major negative changes in structure or function across the cohort and over the intervals studied. Variation in severity of disease expression between patients occurs; however, despite difficulties in quantifying structure and function in such seriously visually impaired individuals with nystagmus, the present work supports the use of OCT as a safety outcome and FST as an efficacy outcome in a clinical trial of GUCY2D-LCA. A wide age spectrum for therapy was confirmed, and there was relative stability of structure and function during a typical time interval for clinical trials.


Assuntos
Guanilato Ciclase/genética , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/fisiopatologia , Receptores de Superfície Celular/genética , Retina/patologia , Retina/fisiopatologia , Visão Ocular , Adolescente , Adulto , Criança , Fluorescência , Humanos , Amaurose Congênita de Leber/diagnóstico por imagem , Retina/diagnóstico por imagem , Células Fotorreceptoras Retinianas Cones/metabolismo , Tomografia de Coerência Óptica , Adulto Jovem
11.
Hum Mutat ; 41(1): 255-264, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31544997

RESUMO

Our comprehensive cohort of 1100 unrelated achromatopsia (ACHM) patients comprises a considerable number of cases (~5%) harboring only a single pathogenic variant in the major ACHM gene CNGB3. We sequenced the entire CNGB3 locus in 33 of these patients to find a second variant which eventually explained the patients' phenotype. Forty-seven intronic CNGB3 variants were identified in 28 subjects after a filtering step based on frequency and the exclusion of variants found in cis with pathogenic alleles. In a second step, in silico prediction tools were used to filter out those variants with little odds of being deleterious. This left three variants that were analyzed using heterologous splicing assays. Variant c.1663-1205G>A, found in 14 subjects, and variant c.1663-2137C>T, found in two subjects, were indeed shown to exert a splicing defect by causing pseudoexon insertion into the transcript. Subsequent screening of further unsolved CNGB3 subjects identified four additional cases harboring the c.1663-1205G>A variant which makes it the eighth most frequent CNGB3 variant in our cohort. Compound heterozygosity could be validated in ten cases. Our study demonstrates that whole gene sequencing can be a powerful approach to identify the second pathogenic allele in patients apparently harboring only one disease-causing variant.


Assuntos
Defeitos da Visão Cromática/diagnóstico , Defeitos da Visão Cromática/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Éxons , Variação Genética , Íntrons , Pseudogenes , Alelos , Substituição de Aminoácidos , Sequência de Bases , Biologia Computacional/métodos , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Mutação , Fenótipo , Splicing de RNA
12.
J Biol Chem ; 294(10): 3476-3488, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30622141

RESUMO

The guanylyl cyclase-activating protein, GCAP1, activates photoreceptor membrane guanylyl cyclase (RetGC) in the light, when free Ca2+ concentrations decline, and decelerates the cyclase in the dark, when Ca2+ concentrations rise. Here, we report a novel mutation, G86R, in the GCAP1 (GUCA1A) gene in a family with a dominant retinopathy. The G86R substitution in a "hinge" region connecting EF-hand domains 2 and 3 in GCAP1 strongly interfered with its Ca2+-dependent activator-to-inhibitor conformational transition. The G86R-GCAP1 variant activated RetGC at low Ca2+ concentrations with higher affinity than did the WT GCAP1, but failed to decelerate the cyclase at the Ca2+ concentrations characteristic of dark-adapted photoreceptors. Ca2+-dependent increase in Trp94 fluorescence, indicative of the GCAP1 transition to its RetGC inhibiting state, was suppressed and shifted to a higher Ca2+ range. Conformational changes in G86R GCAP1 detectable by isothermal titration calorimetry (ITC) also became less sensitive to Ca2+, and the dose dependence of the G86R GCAP1-RetGC1 complex inhibition by retinal degeneration 3 (RD3) protein was shifted toward higher than normal concentrations. Our results indicate that the flexibility of the hinge region between EF-hands 2 and 3 is required for placing GCAP1-regulated Ca2+ sensitivity of the cyclase within the physiological range of intracellular Ca2+ at the expense of reducing GCAP1 affinity for the target enzyme. The disease-linked mutation of the hinge Gly86, leading to abnormally high affinity for the target enzyme and reduced Ca2+ sensitivity of GCAP1, is predicted to abnormally elevate cGMP production and Ca2+ influx in photoreceptors in the dark.


Assuntos
Cálcio/metabolismo , Distrofias de Cones e Bastonetes/genética , Proteínas Ativadoras de Guanilato Ciclase/genética , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Guanilato Ciclase/metabolismo , Mutação , Retina/enzimologia , Morte Celular/genética , Distrofias de Cones e Bastonetes/enzimologia , Distrofias de Cones e Bastonetes/metabolismo , Distrofias de Cones e Bastonetes/patologia , Proteínas Ativadoras de Guanilato Ciclase/química , Humanos , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Retina/patologia , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia
13.
Hum Mutat ; 40(8): 1145-1155, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31058429

RESUMO

Achromatopsia (ACHM) is a hereditary cone photoreceptor disorder characterized by the inability to discriminate colors, nystagmus, photophobia, and low-visual acuity. Six genes have been associated with this rare autosomal recessively inherited disease, including the GNAT2 gene encoding the catalytic α-subunit of the G-protein transducin which is expressed in the cone photoreceptor outer segment. Out of a cohort of 1,116 independent families diagnosed with a primary clinical diagnosis of ACHM, we identified 23 patients with ACHM from 19 independent families with likely causative mutations in GNAT2, representing 1.7% of our large ACHM cohort. In total 22 different potentially disease-causing variants, of which 12 are novel, were identified. The mutation spectrum also includes a novel copy number variation, a heterozygous duplication of exon 4, of which the breakpoint matches exactly that of the previously reported exon 4 deletion. Two patients carry just a single heterozygous variant. In addition to our previous study on GNAT2-ACHM, we also present detailed clinical data of these patients.


Assuntos
Defeitos da Visão Cromática/genética , Proteínas Heterotriméricas de Ligação ao GTP/genética , Mutação , Análise de Sequência de DNA/métodos , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Variações do Número de Cópias de DNA , Éxons , Feminino , Predisposição Genética para Doença , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Linhagem , Adulto Jovem
14.
Hum Mol Genet ; 26(1): 133-144, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28025326

RESUMO

Macular dystrophy leads to progressive loss of central vision and shows symptoms similar to age-related macular degeneration. Genetic screening of patients diagnosed with macular dystrophy disclosed a novel mutation in the GUCA1A gene, namely a c.526C > T substitution leading to the amino acid substitution p.L176F in the guanylate cyclase-activating protein 1 (GCAP1). The same variant was found in three families showing an autosomal dominant mode of inheritance. For a full functional characterization of the L176F mutant we expressed and purified the mutant protein and measured key parameters of its activating properties, its Ca2+/Mg2+-binding, and its Ca2+-induced conformational changes in comparison to the wildtype protein. The mutant was less sensitive to changes in free Ca2+, resulting in a constitutively active form under physiological Ca2+-concentration, showed significantly higher activation rates than the wildtype (90-fold versus 20-fold) and interacted with an higher apparent affinity with its target guanylate cyclase. However, direct Ca2+-binding of the mutant was nearly similar to the wildtype; binding of Mg2+ occurred with higher affinity. We performed molecular dynamics simulations for comparing the Ca2+-saturated inhibiting state of GCAP1 with the Mg2+-bound activating states. The L176F mutant exhibited significantly lower flexibility, when three Ca2+ or two Mg2+ were bound forming probably the structural basis for the modified GCAP1 function.


Assuntos
Cálcio/metabolismo , GMP Cíclico/metabolismo , Proteínas Ativadoras de Guanilato Ciclase/genética , Degeneração Macular/genética , Mutação/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Adolescente , Adulto , Feminino , Proteínas Ativadoras de Guanilato Ciclase/química , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Humanos , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Masculino , Pessoa de Meia-Idade , Simulação de Dinâmica Molecular , Linhagem , Conformação Proteica , Células Fotorreceptoras Retinianas Cones/patologia , Adulto Jovem
15.
Hum Mol Genet ; 26(12): 2218-2230, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28369466

RESUMO

In retinal photoreceptors, vectorial transport of cargo is critical for transduction of visual signals, and defects in intracellular trafficking can lead to photoreceptor degeneration and vision impairment. Molecular signatures associated with routing of transport vesicles in photoreceptors are poorly understood. We previously reported the identification of a novel rod photoreceptor specific isoform of Receptor Expression Enhancing Protein (REEP) 6, which belongs to a family of proteins involved in intracellular transport of receptors to the plasma membrane. Here we show that loss of REEP6 in mice (Reep6-/-) results in progressive retinal degeneration. Rod photoreceptor dysfunction is observed in Reep6-/- mice as early as one month of age and associated with aberrant accumulation of vacuole-like structures at the apical inner segment and reduction in selected rod phototransduction proteins. We demonstrate that REEP6 is detected in a subset of Clathrin-coated vesicles and interacts with the t-SNARE, Syntaxin3. In concordance with the rod degeneration phenotype in Reep6-/- mice, whole exome sequencing identified homozygous REEP6-E75K mutation in two retinitis pigmentosa families of different ethnicities. Our studies suggest a critical function of REEP6 in trafficking of cargo via a subset of Clathrin-coated vesicles to selected membrane sites in retinal rod photoreceptors.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Animais , Vesículas Revestidas por Clatrina/metabolismo , Proteínas do Olho/genética , Transdução de Sinal Luminoso , Proteínas de Membrana , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Knockout , Mutação , Células Fotorreceptoras de Vertebrados/metabolismo , Isoformas de Proteínas/metabolismo , Transporte Proteico , Proteínas Qa-SNARE/metabolismo , Degeneração Retiniana/metabolismo , Retinose Pigmentar/genética , Proteínas SNARE/metabolismo
16.
Am J Hum Genet ; 99(3): 555-566, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27569549

RESUMO

Genomic imprinting is a mechanism in which gene expression varies depending on parental origin. Imprinting occurs through differential epigenetic marks on the two parental alleles, with most imprinted loci marked by the presence of differentially methylated regions (DMRs). To identify sites of parental epigenetic bias, here we have profiled DNA methylation patterns in a cohort of 57 individuals with uniparental disomy (UPD) for 19 different chromosomes, defining imprinted DMRs as sites where the maternal and paternal methylation levels diverge significantly from the biparental mean. Using this approach we identified 77 DMRs, including nearly all those described in previous studies, in addition to 34 DMRs not previously reported. These include a DMR at TUBGCP5 within the recurrent 15q11.2 microdeletion region, suggesting potential parent-of-origin effects associated with this genomic disorder. We also observed a modest parental bias in DNA methylation levels at every CpG analyzed across ∼1.9 Mb of the 15q11-q13 Prader-Willi/Angelman syndrome region, demonstrating that the influence of imprinting is not limited to individual regulatory elements such as CpG islands, but can extend across entire chromosomal domains. Using RNA-seq data, we detected signatures consistent with imprinted expression associated with nine novel DMRs. Finally, using a population sample of 4,004 blood methylomes, we define patterns of epigenetic variation at DMRs, identifying rare individuals with global gain or loss of methylation across multiple imprinted loci. Our data provide a detailed map of parental epigenetic bias in the human genome, providing insights into potential parent-of-origin effects.


Assuntos
Metilação de DNA/genética , Epigênese Genética/genética , Genoma Humano/genética , Pais , Dissomia Uniparental/genética , Alelos , Síndrome de Angelman/genética , Aberrações Cromossômicas , Cromossomos Humanos/genética , Cromossomos Humanos Par 15/genética , Estudos de Coortes , Ilhas de CpG/genética , Feminino , Impressão Genômica/genética , Humanos , Deficiência Intelectual/genética , Cariótipo , Masculino , Proteínas Associadas aos Microtúbulos/genética , Síndrome de Prader-Willi/genética , Reprodutibilidade dos Testes , Análise de Sequência de RNA
17.
Int J Mol Sci ; 20(21)2019 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-31717845

RESUMO

Gene therapy for adRP due to RHO mutations was recently shown to prevent photoreceptor death in a canine model of Class B disease. Among translational steps to be taken, one is to determine a method to detect efficacy in a human clinical trial. The relatively slow progression of adRP becomes a difficulty for clinical trials requiring an answer to whether there is slowed progression of degeneration in response to therapy. We performed a single-center, retrospective observational study of cross-sectional and longitudinal data. The study was prompted by our identification of a pericentral disease distribution in Class B RHO-adRP. Ultrawide optical coherence tomography (OCT) scans were used. Inferior retinal pericentral defects was an early disease feature. Degeneration further inferior in the retina merged with the pericentral defect, which extended into superior retina. In about 70% of patients, there was an asymmetric island of structure with significantly greater superior than inferior ellipsoid zone (EZ) extent. Serial measures of photoreceptor structure by OCT indicated constriction in superior retinal extent within a two-year interval. We conclude that these results should allow early-phase trials of therapy in RHO-adRP to move forward by inclusion of patients with an asymmetric extent of photoreceptor structure and by monitoring therapeutic effects over two years in the superior retina, a reasonable target for subretinal injection.


Assuntos
Mutação , Retinose Pigmentar/diagnóstico por imagem , Rodopsina/genética , Tomografia de Coerência Óptica/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Criança , Estudos Transversais , Feminino , Predisposição Genética para Doença , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Retinose Pigmentar/genética , Estudos Retrospectivos , Adulto Jovem
18.
Int J Mol Sci ; 20(10)2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31117170

RESUMO

Recessively-inherited NR2E3 gene mutations cause an unusual retinopathy with abnormally-increased short-wavelength sensitive cone (S-cone) function, in addition to reduced rod and long/middle-wavelength sensitive cone (L/M-cone) function. Progress toward clinical trials to treat patients with this otherwise incurable retinal degeneration prompted the need to determine efficacy outcome measures. Comparisons were made between three computerized perimeters available in the clinic. These perimeters could deliver short-wavelength stimuli on longer-wavelength adapting backgrounds to measure whether S-cone vision can be quantified. Results from a cohort of normal subjects were compared across the three perimeters to determine S-cone isolation and test-retest variability. S-cone perimetry data from NR2E3-ESCS (enhanced S-cone syndrome) patients were examined and determined to have five stages of disease severity. Using these stages, strategies were proposed for monitoring efficacy of either a focal or retina-wide intervention. This work sets the stage for clinical trials.


Assuntos
Oftalmopatias Hereditárias/diagnóstico , Mutação , Receptores Nucleares Órfãos/genética , Células Fotorreceptoras Retinianas Cones/fisiologia , Degeneração Retiniana/diagnóstico , Transtornos da Visão/diagnóstico , Testes de Campo Visual/métodos , Adolescente , Adulto , Idoso , Criança , Ensaios Clínicos como Assunto , Oftalmopatias Hereditárias/metabolismo , Oftalmopatias Hereditárias/fisiopatologia , Humanos , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/metabolismo , Degeneração Retiniana/fisiopatologia , Transtornos da Visão/metabolismo , Transtornos da Visão/fisiopatologia , Adulto Jovem
19.
Hum Mol Genet ; 25(24): 5444-5459, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27798110

RESUMO

Mutations in the ORF15 exon of the RPGR gene cause a common form of X-linked retinitis pigmentosa, which often results in severe loss of vision. In dogs and mice, gene augmentation therapy has been shown to arrest the progressive degeneration of rod and cone photoreceptors. However, the distribution of potentially treatable photoreceptors across the human retinas and the rate of degeneration are not known. Here, we have defined structural and functional features of the disease in 70 individuals with ORF15 mutations. We also correlated the features observed in patients with those of three Rpgr-mutant (Rpgr-ko, Rd9, and Rpgr-cko) mice. In patients, there was pronounced macular disease. Across the retina, rod and cone dysfunction showed a range of patterns and a spectrum of severity between individuals, but a high symmetry was observed between eyes of each individual. Genotype was not related to disease expression. In the Rpgr-ko mice, there were intra-retinal differences in rhodopsin and cone opsin trafficking. In Rd9 and Rpgr-cko mice, retinal degeneration showed inter-ocular symmetry. Longitudinal results in patients revealed localized rod and cone dysfunction with progression rates of 0.8 to 1.3 log per decade in sensitivity loss. Relatively retained rod and cone photoreceptors in mid- and far-peripheral temporal-inferior and nasal-inferior visual field regions should be good targets for future localized gene therapies in patients.


Assuntos
Proteínas do Olho/genética , Degeneração Retiniana/genética , Retinosquise/genética , Rodopsina/genética , Adolescente , Adulto , Idoso , Animais , Criança , Heterozigoto , Humanos , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Mutação , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinosquise/patologia , Rodopsina/metabolismo , Adulto Jovem
20.
Hum Mol Genet ; 25(19): 4211-4226, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27506978

RESUMO

Ciliary defects can result in severe disorders called ciliopathies. Mutations in NPHP5 cause a ciliopathy characterized by severe childhood onset retinal blindness, Leber congenital amaurosis (LCA), and renal disease. Using the canine NPHP5-LCA model we compared human and canine retinal phenotypes, and examined the early stages of photoreceptor development and degeneration, the kinetics of photoreceptor loss, the progression of degeneration and the expression profiles of selected genes. NPHP5-mutant dogs recapitulate the human phenotype of very early loss of rods, and relative retention of the central retinal cone photoreceptors that lack function. In mutant dogs, rod and cone photoreceptors have a sensory cilium, but develop and function abnormally and then rapidly degenerate; L/M cones are more severely affected than S-cones. The lack of outer segments in mutant cones indicates a ciliary dysfunction. Genes expressed in mutant rod or both rod and cone photoreceptors show significant downregulation, while those expressed only in cones are unchanged. Many genes in cell-death and -survival pathways also are downregulated. The canine disease is a non-syndromic LCA-ciliopathy, with normal renal structures and no CNS abnormalities. Our results identify the critical time points in the pathogenesis of the photoreceptor disease, and bring us closer to defining a potential time window for testing novel therapies for translation to patients.


Assuntos
Proteínas de Ligação a Calmodulina/genética , Cílios/genética , Amaurose Congênita de Leber/genética , Células Fotorreceptoras/metabolismo , Retina/patologia , Animais , Cílios/patologia , Modelos Animais de Doenças , Cães , Humanos , Amaurose Congênita de Leber/metabolismo , Amaurose Congênita de Leber/fisiopatologia , Mutação , Células Fotorreceptoras/patologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA