Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
2.
eNeuro ; 11(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38164539

RESUMO

Stereotypical isocortical tau protein pathology along the Braak stages has been described as an instigator of neurodegeneration in Alzheimer's disease (AD). Less is known about tau pathology in motor regions, although higher-order motor deficits such as praxis dysfunction are part of the clinical description. Here, we examined how tau pathology in cytoarchitectonically mapped regions of the primary and higher-order motor network in comparison to primary visual and sensory regions varies across the clinical spectrum of AD. We analyzed tau PET scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort in patients with mild cognitive impairment (MCI; N = 84) and dementia of the Alzheimer's disease type (DAD; N = 25). Additionally, an amyloid-negative sample of healthy older individuals (HC; N = 26) were included. Standard uptake ratio values (SUVRs) were extracted in native space from the left and the right hemispheres. A repeated measurement analysis of variance was conducted to assess the effect of diagnostic disease category on tau pathology in the individual motor regions, controlling for age. We observed that tau pathology varies as a function of diagnostic category in predominantly higher motor regions (i.e., supplementary motor area, superior parietal lobe, angular gyrus, and dorsal premotor cortex) compared to primary visual, sensory and motor regions. Indeed, tau in higher-order motor regions was significantly associated with decline in cognitive function. Together, these results expand our knowledge on the in vivo pattern of tau pathology in AD and suggest that higher motor regions are not spared from tau aggregation in the course of disease, potentially contributing to the symptomatic appearance of the disease.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Proteínas tau/metabolismo , Neuroimagem , Tomografia por Emissão de Pósitrons/métodos , Disfunção Cognitiva/metabolismo , Peptídeos beta-Amiloides/metabolismo
3.
medRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38645131

RESUMO

Objectives: Apraxia is a core feature of Alzheimer's disease, but the pathomechanism of this characteristic symptom is not well understood. Here, we systematically investigated apraxia profiles in a well-defined group of patients with Alzheimer's disease (AD; N=32) who additionally underwent PET imaging with the second-generation tau PET tracer [18F]PI-2620. We hypothesized that specific patterns of tau pathology might be related to apraxic deficits. Methods: Patients (N=32) with a biomarker-confirmed diagnosis of Alzheimer's disease were recruited in addition to a sample cognitively unimpaired controls (CU 1 ; N=41). Both groups underwent in-depth neuropsychological assessment of apraxia (Dementia Apraxia Screening Test; DATE and the Cologne Apraxia Screening; KAS). In addition, static PET imaging with [18F]PI-2620 was performed to assess tau pathology in the AD patients. To specifically investigate the association of apraxia with regional tau-pathology, we compared the PET-data from this group with an independent sample of amyloid-negative cognitively intact participants (CU 2; N=54) by generation of z-score-deviation maps as well as voxel- based multiple regression analyses. Results: We identified significant clusters of tau-aggregation in praxis-related regions (e.g., supramarginal gyrus, angular gyrus, temporal, parietal and occipital regions) that were associated with apraxia. These regions were similar between the two apraxia assessments. No correlations between tau-tracer uptake in primary motor cortical or subcortical brain regions and apraxia were observed. Conclusions: These results suggest that tau deposition in specific cortical brain regions may induce local neuronal dysfunction leading to a dose-dependent functional decline in praxis performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA