Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Nanobiotechnology ; 19(1): 168, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082768

RESUMO

BACKGROUND: Lipid liquid crystalline nanoparticles (LLCNPs) emerge as a suitable system for drug and contrast agent delivery. In this regard due to their unique properties, they offer a solubility of a variety of active pharmaceutics with different polarities increasing their stability and the possibility of controlled delivery. Nevertheless, the most crucial aspect underlying the application of LLCNPs for drug or contrast agent delivery is the unequivocal assessment of their biocompatibility, including cytotoxicity, genotoxicity, and related aspects. Although studies regarding the cytotoxicity of LLCNPs prepared from various lipids and surfactants were conducted, the actual mechanism and its impact on the cells (both cancer and normal) are not entirely comprehended. Therefore, in this study, LLCNPs colloidal formulations were prepared from two most popular structure-forming lipids, i.e., glyceryl monooleate (GMO) and phytantriol (PHT) with different lipid content of 2 and 20 w/w%, and the surfactant Pluronic F-127 using the top-down approach for further comparison of their properties. Prepared formulations were subjected to physicochemical characterization and followed with in-depth biological characterization, which included cyto- and genotoxicity towards cervical cancer cells (HeLa) and human fibroblast cells (MSU 1.1), the evaluation of cytoskeleton integrity, intracellular reactive oxygen species (ROS) generation upon treatment with prepared LLCNPs and finally the identification of internalization pathways. RESULTS: Results denote the higher cytotoxicity of PHT-based nanoparticles on both cell lines on monolayers as well as cellular spheroids, what is in accordance with evaluation of ROS activity level and cytoskeleton integrity. Detected level of ROS in cells upon the treatment with LLCNPs indicates their insignificant contribution to the cellular redox balance for most concentrations, however distinct for GMO- and PHT-based LLCNPs. The disintegration of cytoskeleton after administration of LLCNPs implies the relation between LLCNPs and F-actin filaments. Additionally, the expression of four genes involved in DNA damage and important metabolic processes was analyzed, indicating concentration-dependent differences between PHT- and GMO-based LLCNPs. CONCLUSIONS: Overall, GMO-based LLCNPs emerge as potentially more viable candidates for drug delivery systems as their impact on cells is not as deleterious as PHT-based as well as they were efficiently internalized by cell monolayers and 3D spheroids.


Assuntos
Álcoois Graxos/toxicidade , Glicerídeos/toxicidade , Nanopartículas/química , Química Farmacêutica , Portadores de Fármacos/química , Composição de Medicamentos , Sistemas de Liberação de Medicamentos/métodos , Álcoois Graxos/química , Glicerídeos/química , Humanos , Lipídeos/química , Testes de Mutagenicidade , Tamanho da Partícula , Poloxâmero/química , Poloxâmero/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Solubilidade , Tensoativos
2.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803568

RESUMO

Virus-like particles (VLPs), due to their nanoscale dimensions, presence of interior cavities, self-organization abilities and responsiveness to environmental changes, are of interest in the field of nanotechnology. Nevertheless, comprehensive knowledge of VLP self-assembly principles is incomplete. VLP formation is governed by two types of interactions: protein-cargo and protein-protein. These interactions can be modulated by the physicochemical properties of the surroundings. Here, we used brome mosaic virus (BMV) capsid protein produced in an E. coli expression system to study the impact of ionic strength, pH and encapsulated cargo on the assembly of VLPs and their features. We showed that empty VLP assembly strongly depends on pH whereas ionic strength of the buffer plays secondary but significant role. Comparison of VLPs containing tRNA and polystyrene sulfonic acid (PSS) revealed that the structured tRNA profoundly increases VLPs stability. We also designed and produced mutated BMV capsid proteins that formed VLPs showing altered diameters and stability compared to VLPs composed of unmodified proteins. We also observed that VLPs containing unstructured polyelectrolyte (PSS) adopt compact but not necessarily more stable structures. Thus, our methodology of VLP production allows for obtaining different VLP variants and their adjustment to the incorporated cargo.


Assuntos
Bromovirus/metabolismo , Proteínas do Capsídeo/metabolismo , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo , Vírion/metabolismo , Bromovirus/ultraestrutura , Modelos Moleculares , Tamanho da Partícula , RNA de Transferência/metabolismo , Temperatura , Vírion/ultraestrutura
3.
Chemistry ; 26(72): 17604-17612, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-32780903

RESUMO

Efficient OLED devices have been fabricated using organometallic complexes of platinum group metals. Still, the high material cost and low stability represent central challenges for their application in commercial display technologies. Based on its innate stability, gold(III) complexes are emerging as promising candidates for high-performance OLEDs. Here, a series of alkynyl-, N-heterocyclic carbene (NHC)- and aryl-gold(III) complexes stabilized by a κ3 -(N^C^C) template have been prepared and their photophysical properties have been characterized in detail. These compounds exhibit good photoluminescence quantum efficiency (ηPL ) of up to 33 %. The PL emission can be tuned from sky-blue to yellowish green colors by variations on both the ancillary ligands as well as on the pincer template. Further, solution-processable OLED devices based on some of these complexes display remarkable emissive properties (ηCE 46.6 cd.A-1 and ηext 14.0 %), thus showcasing the potential of these motifs for the low-cost fabrication of display and illumination technologies.

4.
Nano Lett ; 17(9): 5277-5284, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28770603

RESUMO

Pure green light-emitting diodes (LEDs) are essential for realizing an ultrawide color gamut in next-generation displays, as is defined by the recommendation (Rec.) 2020 standard. However, because the human eye is more sensitive to the green spectral region, it is not yet possible to achieve an ultrapure green electroluminescence (EL) with a sufficiently narrow bandwidth that covers >95% of the Rec. 2020 standard in the CIE 1931 color space. Here, we demonstrate efficient, ultrapure green EL based on the colloidal two-dimensional (2D) formamidinium lead bromide (FAPbBr3) hybrid perovskites. Through the dielectric quantum well (DQW) engineering, the quantum-confined 2D FAPbBr3 perovskites exhibit a high exciton binding energy of 162 meV, resulting in a high photoluminescence quantum yield (PLQY) of ∼92% in the spin-coated films. Our optimized LED devices show a maximum current efficiency (ηCE) of 13.02 cd A-1 and the CIE 1931 color coordinates of (0.168, 0.773). The color gamut covers 97% and 99% of the Rec. 2020 standard in the CIE 1931 and the CIE 1976 color space, respectively, representing the "greenest" LEDs ever reported. Moreover, the device shows only a ∼10% roll-off in ηCE (11.3 cd A-1) at 1000 cd m-2. We further demonstrate large-area (3 cm2) and ultraflexible (bending radius of 2 mm) LEDs based on 2D perovskites.

5.
J Mater Chem C Mater ; 9(17): 5771-5778, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33996098

RESUMO

Colloidal nanocrystals (NCs) of lead halide perovskites have generated considerable interest in the fabrication of optoelectronic devices, such as light emitting-diodes (LEDs), because of their tunable optical bandgap, narrow spectral width, and high defect tolerance. However, the inhomogeneous halide distribution within individual NCs remains a critical challenge in order to obtain color-stable electroluminescence in mixed-halide systems. Here, we demonstrate a new post-synthetic approach, ligand-assisted solid phase synthesis (LASPS), for the preparation of electroluminescent colloidal NCs of methylammonium (MA) lead halide perovskites, at room temperature. The slow reaction kinetics preserves the morphology, size, and shape in the resulting NCs whose emission covers the entire visible spectral region with photoluminescence (PL) quantum yields (QYs) of up to >90% and colloidal stability up to several months. The LEDs fabricated using the prepared mixed-halide NCs display narrowband electroluminescence (EL) ranging from 476 to 720 nm. The optimized red LEDs exhibit an external quantum efficiency, η ext, of up to 2.65%, with the CIE 1931 color coordinates of (0.705, 0.290), nearly identical to those of the red primary in the recommendation (rec.) 2020 standard (0.708, 0.292).

6.
Sci Adv ; 7(15)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33827807

RESUMO

Tuning emission color of molecular fluorophores is of fundamental interest as it directly reflects the manipulation of excited states at the quantum mechanical level. Despite recent progress in molecular design and engineering on single fluorophores, a systematic methodology to obtain multicolor emission in aggregated or solid states, which gives rise to practical implications, remains scarce. In this study, we present a general strategy to continuously tune the emission color of a single-fluorophore aggregate by polymerization-mediated through-space charge transfer (TSCT). Using a library of well-defined styrenic donor (D) polymers grown from an acceptor (A) fluorophore by controlled radical polymerization, we found that the solid-state emission color can be fine-tuned by varying three molecular parameters: (i) the monomer substituent, (ii) the end groups of the polymer, and (iii) the polymer chain length. Experimental and theoretical investigations reveal that the color tunability originates from the structurally dependent TSCT process that regulates charge transfer energy.

7.
Nat Commun ; 11(1): 387, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959755

RESUMO

Miniaturized photonic sources based on semiconducting two-dimensional (2D) materials offer new technological opportunities beyond the modern III-V platforms. For example, the quantum-confined 2D electronic structure aligns the exciton transition dipole moment parallel to the surface plane, thereby outcoupling more light to air which gives rise to high-efficiency quantum optics and electroluminescent devices. It requires scalable materials and processes to create the decoupled multi-quantum-well superlattices, in which individual 2D material layers are isolated by atomically thin quantum barriers. Here, we report decoupled multi-quantum-well superlattices comprised of the colloidal quantum wells of lead halide perovskites, with unprecedentedly ultrathin quantum barriers that screen interlayer interactions within the range of 6.5 Å. Crystallographic and 2D k-space spectroscopic analysis reveals that the transition dipole moment orientation of bright excitons in the superlattices is predominantly in-plane and independent of stacking layer and quantum barrier thickness, confirming interlayer decoupling.

8.
J Phys Chem Lett ; 10(24): 7560-7567, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31736317

RESUMO

There has been a tremendous amount of interest in developing high-efficiency light-emitting diodes (LEDs) based on colloidal nanocrystals (NCs) of hybrid lead halide perovskites. Here, we systematically investigate the ligand effects on EL characteristics by tuning the hydrophobicity of primary alkylamine ligands used in NC synthesis. By increasing the ligand hydrophobicity, we find (i) a reduced NC size that induces a higher degree of quantum confinement, (ii) a shortened exciton lifetime that increases the photoluminescence quantum yield, (iii) a lowering of refractive index that increases the light outcoupling efficiency, and (iv) an increased thin-film resistivity. Accordingly, ligand engineering allows us to demonstrate high-performance green LEDs exhibiting a maximum external quantum efficiency up to 16.2%. The device operational lifetime, defined by the time lasted when the device luminance reduces to 85% of its initial value, LT85, reaches 243 min at an initial luminance of 516 cd m-2.

9.
Sci Adv ; 3(12): eaaq0208, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29282451

RESUMO

The outstanding excitonic properties, including photoluminescence quantum yield (ηPL), of individual, quantum-confined semiconductor nanoparticles are often significantly quenched upon aggregation, representing the main obstacle toward scalable photonic devices. We report aggregation-induced emission phenomena in lamellar solids containing layer-controlled colloidal quantum wells (QWs) of hybrid organic-inorganic lead bromide perovskites, resulting in anomalously high solid-state ηPL of up to 94%. Upon forming the QW solids, we observe an inverse correlation between exciton lifetime and ηPL, distinct from that in typical quantum dot solid systems. Our multiscale theoretical analysis reveals that, in a lamellar solid, the collective motion of the surface organic cations is more restricted to orient along the [100] direction, thereby inducing a more direct bandgap that facilitates radiative recombination. Using the QW solids, we demonstrate ultrapure green emission by completely downconverting a blue gallium nitride light-emitting diode at room temperature, with a luminous efficacy higher than 90 lumen W-1 at 5000 cd m-2, which has never been reached in any nanomaterial assemblies by far.

10.
ACS Appl Mater Interfaces ; 9(5): 4948-4955, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28078888

RESUMO

The race for performance of integrated circuits is nowadays facing a downscale limitation. To overpass this nanoscale limit, modern transistors with complex geometries have flourished, allowing higher performance and energy efficiency. Accompanying this breakthrough, challenges toward high-performance devices have emerged on each significant step, such as the inhomogeneous coverage issue and thermal-induced short circuit issue of metal silicide formation. In this respect, we developed a two-step organometallic approach for nickel silicide formation under near-ambient temperature. Transmission electron and atomic force microscopy show the formation of a homogeneous and conformal layer of NiSix on pristine silicon surface. Post-treatment decreases the carbon content to a level similar to what is found for the original wafer (∼6%). X-ray photoelectron spectroscopy also reveals an increasing ratio of Si content in the layer after annealing, which is shown to be NiSi2 according to X-ray absorption spectroscopy investigation on a Si nanoparticle model. I-V characteristic fitting reveals that this NiSi2 layer exhibits a competitive Schottky barrier height of 0.41 eV and series resistance of 8.5 Ω, thus opening an alternative low-temperature route for metal silicide formation on advanced devices.

11.
J Phys Chem B ; 120(13): 3267-80, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27007829

RESUMO

Gaining understanding on the aggregation behavior of proteins under concentrated conditions is of both fundamental and industrial relevance. Here, we study the aggregation kinetics of a model monoclonal antibody (mAb) under thermal stress over a wide range of protein concentrations in various buffer solutions. We follow experimentally the monomer depletion and the aggregate growth by size exclusion chromatography with inline light scattering. We describe the experimental results in the frame of a kinetic model based on population balance equations, which allows one to discriminate the contributions of the conformational and of the colloidal stabilities to the global aggregation rate. Finally, we propose an expression for the aggregation rate constant, which accounts for solution viscosity, protein-protein interactions, as well as aggregate compactness. All these effects can be quantified by light scattering techniques. It is found that the model describes well the experimental data under dilute conditions. Under concentrated conditions, good model predictions are obtained when the solution pH is far below the isoelectric point (pI) of the mAb. However, peculiar effects arise when the solution pH is increased toward the mAb pI, and possible explanations are discussed.


Assuntos
Anticorpos Monoclonais/química , Imunoglobulina G/química , Agregados Proteicos , Cromatografia em Gel , Difusão Dinâmica da Luz , Cinética , Temperatura , Viscosidade
12.
ACS Nano ; 10(10): 9720-9729, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27684448

RESUMO

Solution-processed hybrid organic-inorganic lead halide perovskites are emerging as one of the most promising candidates for low-cost light-emitting diodes (LEDs). However, due to a small exciton binding energy, it is not yet possible to achieve an efficient electroluminescence within the blue wavelength region at room temperature, as is necessary for full-spectrum light sources. Here, we demonstrate efficient blue LEDs based on the colloidal, quantum-confined 2D perovskites, with precisely controlled stacking down to one-unit-cell thickness (n = 1). A variety of low-k organic host compounds are used to disperse the 2D perovskites, effectively creating a matrix of the dielectric quantum wells, which significantly boosts the exciton binding energy by the dielectric confinement effect. Through the Förster resonance energy transfer, the excitons down-convert and recombine radiatively in the 2D perovskites. We report room-temperature pure green (n = 7-10), sky blue (n = 5), pure blue (n = 3), and deep blue (n = 1) electroluminescence, with record-high external quantum efficiencies in the green-to-blue wavelength region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA